

Context-Free Grammars

- Invented by Chomsky in 1959 to explain the grammar of natural languages.
- Also invented by Backus in 1959 to generate and parse Fortran.
- Example:
- terminals: b, e
- non-terminals: S, A
- Production Rules:
$\mathrm{S} \rightarrow \mathrm{SA}, \mathrm{S} \rightarrow \mathrm{A}, \mathrm{A} \rightarrow \mathrm{bSe}, \mathrm{A} \rightarrow$ be
$-S$ is the start symbol

CSE 490gz - Lecture 9 - Winter 2002

Sequitur

- Nevill-Manning and Witten, 1996.
- Uses a context-free grammar (without recursion) to represent a string.
- The grammar is inferred from the string.
- If there is structure and repetition in the string then the grammar may be very small compared to the original string.
- Clever encoding of the grammar yields impressive compression ratios.
- Compression plus structure!

Sequitur Principles

- Digram Uniqueness:
- no pair of adjacent symbols (digram) appears more than once in the grammar.
- Rule Utility:
- Every production rule is used more than once.
- These two principles are maintained as an invariant while inferring a grammar for the input string.

Sequitur Example (4) bbebeebebebbebee $\mathrm{S} \rightarrow \text { bbeb }$	

Sequitur Example (5)		
bbebeebebebbebee		
$\mathrm{S} \rightarrow$ bbebe	Enforce dig be occurs Create ne	
	- Winer 2002	11

Sequitur Example (18)

bbebeebebebbebee
$S \rightarrow$ bBeBbA
$\mathrm{S} \rightarrow \mathrm{bBe}$
$\mathrm{A} \rightarrow \mathrm{be}$
$B \rightarrow A A$

Sequitur Example (24)

bbebeebebebbebee

$S \rightarrow C e B C e$	Enforce digram uniqueness.
$A \rightarrow b e$	Ce occurs twice.
$B \rightarrow A A$	Create new rule $D \rightarrow C e$.
$C \rightarrow b B$	

Sequitur Example (26)	
bbeebebebbebee $\mathrm{A} \rightarrow \mathrm{DBD}$ $\mathrm{B} \rightarrow \mathrm{be}$ $\mathrm{D} \rightarrow \mathrm{bBe}$	
CSE 490gz - Lecture 9 - Winter 2002	

Complexity

- The number of non-input sequitur operations applied $\leq 2 n$ where n is the input length.
- Amortized Complexity Argument
- Let $s=$ the sum of the right hand sides of all the production rules. Let $r=$ the number of rules.
- We evaluate 2 s - r .
- Initially $2 s-r=1$ because $s=1$ and $r=1$.
$-2 s-r \geq 0$ at all times because each rule has at least 1 symbol on the right hand side.
$-2 s$ - r increases by 2 for every input operation.
$-2 s-r$ decreases by at least 1 for each non-input sequitur rule applied.

Sequitur Rule Complexity

- Digram Uniqueness - match an existing rule.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{XY} \ldots \\
& \mathrm{~B} \rightarrow \mathrm{XY}
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{B} \ldots . \\
& \mathrm{B} \rightarrow \mathrm{XY}
\end{aligned} \quad \begin{array}{rlc}
\text { s } & \mathrm{r} & 2 \mathrm{c}-\mathrm{r} \\
-1 & 0 & -2
\end{array}
$$

- Digram Uniqueness - create a new rule.

$$
\begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{XY} \ldots . \\
& \mathrm{B} \rightarrow \ldots \mathrm{XY} \ldots .
\end{aligned} \longrightarrow \begin{aligned}
& \mathrm{A} \rightarrow \ldots . \mathrm{C} \ldots . \\
& \mathrm{B} \rightarrow \ldots . \mathrm{C} \ldots .
\end{aligned} \quad \begin{gathered}
\text { s } \\
\mathrm{C} \rightarrow \mathrm{XY}
\end{gathered} \quad \begin{aligned}
& \mathrm{r} \\
& \hline
\end{aligned}
$$

-Rule Utility - Remove a rule.

$$
\begin{gathered}
\begin{array}{l}
\mathrm{A} \rightarrow \ldots . \mathrm{B} \ldots . \\
\mathrm{B} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{k}}
\end{array} \longrightarrow \mathrm{~A} \rightarrow \ldots \mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{k}} \ldots \ldots \begin{array}{rrc}
\mathrm{s} & \mathrm{r} & 2 \mathrm{~s}-\mathrm{r} \\
-1 & -1 & -1
\end{array} \\
\\
\text { CSE 490gz - Lecture } 9 \text { - Winter } 2002
\end{gathered}
$$

Linear Time Algorithm

- There is a data structure to implement all the sequitur operations in constant time.
- Production rules in an array of doubly linked lists.
- Each production rule has reference count of the number of times used.
- Each non-terminal points to its production rule.
- digrams stored in a hash table for quick lookup.
\qquad

Better Encoding of the Grammar

- Nevill-Manning and Witten suggest a more efficient encoding of the grammar that uses LZ77 ideas.
- Send the right hand side of the S production.
- The first time a non-terminal is sent, its right hand side is transmitted instead.
- The second time a non-terminal is sent as a tuple <i,j,k> which says the right hand side starts occurs in production i , at position j and is k long. A new production rule is then added to a dictionary.
- Subsequently, the non-terminal is represented by the index of the production rule.

Notes on Sequitur

- Very new and different from the standards.
- Yields compression and hierarchical structure simultaneously.
- With clever encoding is competitive with the best of the standards.
- Practical linear time encoding and decoding.
- Alternatives
- Off-line algorithms - (i) find the most frequent digram, (ii) find the longest repeated substring

Other Grammar Based Methods

- YK Algorithm
- Kieffer, Yang 2000
- Like Sequitur, but does not allow different nonterminals to generate the same string
- Slower, but has some better theoretical properties
- Longest Match
- Most frequent digram
- Match producing the best compression

