CSE 490 GZ Introduction to Data Compression Winter 2002

Arithmetic Coding: Scaling, Context, Adaptation

Scaling

- · Scaling:
 - By scaling we can keep L and R in a reasonable range of values so that W = R - L does not underflow.
 - The code can be produced progressively, not at the end.
 - Complicates decoding some.

CSE 490gz - Lecture 6 - Winter 2002

Scaling Principle

Lower half

If [L,R) is contained in [0,.5) then

L:= 2L; R:= 2Routput 0, followed by C 1's

C:= 0.

Upper half

If [L,R) is contained in [.5,1) then

L:= 2L-1, R:= 2R-1output 1, followed by C 0's

C:= 0

Middle Half

If [L,R] is contained in [.25,.75) then

L:= 2L-.5, R:= 2R-.5C:= C+1.

CSE 490gz - Lecture 6 - Winter 2002

Arithmetic Coding with Context

- · Maintain the probabilities for each context.
- For the first symbol use the equal probability model
- For each successive symbol use the model for the previous symbol.

CSE 490gz - Lecture 6 - Winter 2002

13

Adaptation

- Simple solution Equally Probable Model.
 - Initially all symbols have frequency 1.
 - After symbol x is coded, increment its frequency by 1
 - Use the new model for coding the next symbol
- Example in alphabet a,b,c,d

CSE 490gz - Lecture 6 - Winter 2002

. . .

Zero Frequency Problem

- · How do we weight symbols that have not occurred yet.
 - Equal weights? Not so good with many symbols
 - Escape symbol, but what should its weight be?
 - When a new symbol is encountered send the <esc>, followed by the symbol in the equally probable model. (Both encoded arithmetically.)

aabaac After aabaac is encoded 1 2 2 3 4 4 The probability model is 0 0 1 1 1 1 h 0 b 1/7 a 4/7 С 000001 c 1/7 d 0 000000 <esc> 1/7 <esc> 1 1 1 1 1 1 1

CSE 490gz - Lecture 6 - Winter 2002

15

PPM

- · Prediction with Partial Matching
 - Cleary and Witten (1984)
- · State of the art arithmetic coder
 - Arbitrary order context
 - The context chosen is one that does a good prediction given the past
 - Adaptive
- Example
 - Context "the" does not predict the next symbol "a" well. Move to the context "he" which does.

CSE 490gz - Lecture 6 - Winter 2002

16

Arithmetic vs. Huffman

- · Both compress very well. For m symbol grouping.
 - Huffman is within 1/m of entropy.
 - Arithmetic is within 2/m of entropy.
- Context
 - Huffman needs a tree for every context.
 - Arithmetic needs a small table of frequencies for every context.
- Adaptation
 - Huffman has an elaborate adaptive algorithm
- Arithmetic has a simple adaptive mechanism.
- Bottom Line Arithmetic is more flexible than Huffman.

CSE 490gz - Lecture 6 - Winter 2002

17