CSE 490 GZ
Introduction to Data Compression
Winter 2002
Golomb Codes
Tunstall Codes

Run-Length Coding

- Lots of 0's and not too many 1's.
- Fax of letters
- Graphics
- Simple run-length code
- 00000010000000001000000000010001001.....
- 691032 ...
- Code the bits as a sequence of integers

Golomb Code of Order m

- Let $\mathrm{n}=\mathrm{qm}+\mathrm{r}$ where $0 \leq r<m$.
- Divide m into n to get the quotient q and remainder r.
- Code for n has two parts:

Example

- $\mathrm{n}=\mathrm{qm}+\mathrm{r}$ is represented by:

$$
\overbrace{11 \cdots 10}^{q} \hat{r}
$$

- where \hat{r} is the fixed prefix code for r

1. q is coded in unary
2. r is coded as a fixed prefix code

Example: $m=5$

- Example:
$\begin{array}{lllll}2 & 6 & 9 & 10 & 27\end{array}$ 0101001101111100011111010

Alternative Explanation Golomb Code			
	input	output	
	00000	1	
01	00001	0111	
$0_{1} 0_{1} 00000$	0001	0110	
100	001	010	
	01	001	
	1	000	
CSE 490gz -	- Winter 20		5

Run Length Example: $m=5$ $00000010000000001000000000010001001 \ldots .$.
1
$00000010000000001000000000010001001 \ldots .$. 001 $00000010000000001000000000010001001 \ldots .$.
1
$00000010000000001000000000010001001 \ldots .$. 0111

In this example we coded 17 bit in only 9 bits.

Choosing m

- Suppose that 0 has the probability p and 1 has probability $1-\mathrm{p}$.
- The probability of $0^{n 1}$ is $p^{n}(1-p)$. The Golomb code of order $m=\left\lceil-1 / \log _{2} p\right\rceil$ is optimal.
$p=127 / 128$
$m=\left\lceil-1 / \log _{2}(127 / 128)\right\rceil=89$
CSE 490gz - Lecture 4 - Winter 2002

Comparison of GC with Entropy

Tunstall Codes

- Variable-to-fixed length code
- Example

input
a output b 000 ca 001 cb 010 cca 11 ccb 100 ccc 110

a b cca cb ccc ... 000001110011110 ...

Average Bit Rate for Golomb Code

Average Bit Rate $=\frac{\text { Average output code length }}{\text { Average input code length }}$

- $m=4$ as an example. With p as the probability of 0 .
$A B R=\frac{p^{4}+3\left(1-p^{4}\right)}{4 p^{4}+4 p^{3}(1-p)+3 p^{2}(1-p)+2 p(1-p)+(1-p)}$

CSE 490gz - Lecture 4 - Winter 2002

Notes on Golomb codes

- Useful for binary compression when one symbol is much more likely than another.
- binary images
- fax documents
- bit planes for wavelet image compression
- Need a parameter (the order)

- training

- adaptively learn the right parameter
- Variable-to-variable length code
- Last symbol needs to be a 1
- coder always adds a 1
- decoder always removes a 1

Tunstall code Properties

1. No input code is a prefix of another to assure unique encodability.
2. Minimize the number of bits per symbol.

Use for unused code

- Consider the string "cc". It does not have a code.
- Send the unused code and some fixed code for the cc.
- Generally, if there are k internal nodes in the prefix tree then there is a need for k - 1 fixed codes.

Designing a Tunstall Code

- Suppose there are minitial symbols.
- Choose a target output length n where $2^{n}>m$.

1. Form a tree with a root and m children with edges labeled with the symbols.
2. If the number of leaves is $>2^{n}-m$ then halt.*
3. Find the leaf with highest probability and expand it to have m children.** Go to 2.

* In the next step we will add m-1 more leaves.
** The probability is the product of the probabilities
of the symbols on the root to leaf path.
- $\mathrm{P}(\mathrm{a})=.7, \mathrm{P}(\mathrm{b})=.2, \mathrm{P}(\mathrm{c})=.1$
- $\mathrm{n}=3$

\square

Example

Example

- $\mathrm{P}(\mathrm{a})=.7, \mathrm{P}(\mathrm{b})=.2, \mathrm{P}(\mathrm{c})=.1$
- $\mathrm{n}=3$

Bit Rate of Tunstall

- The length of the output code divided by the average length of the input code.
- Let p_{i} be the probability of and r_{i} the length of input code $i(1 \leq i \leq s)$ and let n be the length of the output code.

Average bit rate $=\frac{n}{\sum_{i=1}^{s} p_{i} r_{i}}$

Notes on Tunstall Codes

- Variable-to-fixed length code
- Error resilient
- A flipped bit will introduce just one error in the output
- Huffman is not error resilient. A single bit flip can destroy the code.

