Technology Complicating Our Lives

- Complexity leads to
 - rejection: “complexity causes 50% of returns”
 - avoidance: turning off devices to reduce intrusion
 - underutilization: devices do not work together
- Current trends increasing complexity
 - proliferation: environments w/ 100s of devices
 - pervasiveness: dissolving of “home & work”

“Complexity of computers may become the biggest contributor to any digital divide” – WSJ, 6/13/05

We'd like to simplify our personal lives through simple-to-use technologies

Activity-based Computing can Help Simplify our Lives

- Long-lived activities in our everyday lives
 - e.g., staying healthy, graceful aging, social awareness
 - high-level, physical, dynamic, & high value
- Key application elements
 - social
 - e.g., facilitate relationships
 - natural interactions
 - e.g., speech, multimodal, manipulating familiar objects
 - always at hand
 - e.g., run on mobile devices, allow appropriating devices

Digital Simplicity Example: Computer Coordinated Elder Care

- Long-lived activities in our everyday lives
 - high-level, physical, dynamic, & high value
 - let mom live a healthy & independent life
 - high value to all & simplifies life of the family
- Key application elements
 - social
 - care network: elder, doctors, family, friends, etc.
 - natural interactions
 - mom uses normal utensils & touch interaction natural
 - always at hand
 - picture frame, phone, & web
- Display tested successfully

By High-Level Activity We Mean

- Mom eats regularly
- Mom exercises regularly
- Eat breakfast
- Eat lunch
- Biking
- Stretch
- Get on Bike
- Pedal

Let mom live a healthy & independent life
Activity Theory Offers an Approach

- Activity theory describes human activity as a hierarchy of activities, actions, & operations
- A conceptual framework to achieve activity-based design

Digital Simplicity

Key Challenges & New Ideas

- Physical actions are tedious to record & manage
 Build applications using action inference
- Social relationships are complex & delicate
 Use social inference to inform human actions
- Natural interactions are ambiguous
 Improve disambiguation using dynamic context
- Must study in situ over extended periods
 Use new tools to improve data collection/analysis

Key Challenges & New Ideas

- Physical actions are tedious to record & manage
 Build applications using action inference
- Social relationships are complex & delicate
 Use social inference to inform human actions
- Natural interactions are ambiguous
 Improve disambiguation using dynamic context
- Must study in situ over extended periods
 Use new tools to improve data collection/analysis

UbiFIT

Cross-cutting App Using Action Inference

- Problem
 - overweight & obesity are a global epidemic
 - over 1 billion affected worldwide ($100+ billion cost in US alone)
 - busy people have hard time fitting exercise into lives
 - ubicomp technologies can encourage long term fitness
- Challenges
 - fitness a long term activity across many actions/locations
 - motivate without being annoying
 - give people “credit” for everything they do
 - use social support without violating norms

UbiFIT

Cross-cutting App Using Action Inference

- Ubiquitous fitness-influencing technologies (UbiFIT)
 - uses multiple at hand platforms (phone, MSP, RFID, web, etc.)
- Automatic capture of common physical actions
 - Mobile Sensing Platform (MSP) infers actions using 7 sensors (walking, running, bicycling, elliptical trainer, sitting, etc.)
- Self awareness using natural & familiar interaction
 - Ambient Garden on phone conveys activity level during day
 - Smart Gym equipment that logs & is queried by voice
- In situ studies to track long term behavior changes
UbiFit

- Status
 - design ideas refined via a 75 participant survey
 - app implemented w/ both self-journaling & inference
 - 3 week pilot with 10-15 participants this March
 - 3 month study with 20 participants this summer

What People Use is the Key to Recognizing Many Actions

Reliable & Robust Sensing

- RFID tags allow robust sensing of object-person interactions
- Early in trials showed about 85% inference accuracy
 - personal appearance
 - oral hygiene
 - toileting
 - make a snack
 - ...
- Large in-facility trial with major health providers planned for 2007

Inferring Physical Activity w/ Mobile Sensing Platform

- Automatically track physical activity throughout the day
 - walking, running, bicycling, going up stairs, elevator, etc.
- Collaboration between Intel & UW
- 2-sided sensor board with
 - 3D acceleration
 - digital compass
 - audio (8kHz, 16bit)
 - barometric pressure/temperature
 - light: HF, ambient, IR
 - humidity/temperature
- Packaged w/ processor, storage, Bluetooth
- Early results show 75-90% accuracy detecting activities real-time

Apps Built With Action Inference

- Key Inference Engine Research Problems
 - Make it easy to create good out-of-box inference engines
 - easy example labeling
 - labeling app & example management/selection tool
 - sensor/feature/action visualization & relearning tools
 - mobile reporting app to collect negative examples & relearn
 - Lower the cost for getting great action inference
 - users directly/indirectly (UI) label examples at opportune times
 - What are good/great recognition rates for a domain?
 - how do you find out for your application?

Digital Simplicity

- Key Challenges & New Ideas
 - Physical actions are tedious to record & manage
 - Build applications using action inference
 - Social relationships are complex & delicate
 - Use social inference to inform human actions
 - Natural interactions are ambiguous
 - Improve disambiguation using dynamic context
 - Must study in situ over extended periods
 - Use new tools to improve data collection/analysis
Augmented User Study/Design Tools

- **Problem**
 - build the right app
 - what activities & practices to design for?
- build the app right
 - too much expertise required to prototype & study ubicomp apps
 - limited today by laborious & error prone methods

- **Challenges**
 - unobtrusively collecting valid data over extended periods
 - discovering interesting results (e.g., breakdowns) in large data logs
 - understanding the context in which activities of interest take place
 - designing & testing appropriate interactions for a particular context

Solution: Apply ubicomp to in-situ user study & design tools

- improve ratio of quality to effort
- capture real usage context using sensors (location, activity)
- collect data for extended periods (weeks to months)

- **User study tools**
 - augment formative/summative study techniques (MyExperience)
 - add location/activity/social info to ESM tools & logging tools
 - anomaly detection & statistical diagnosis to interpret

- **Design tools**
 - analyze activities from longitudinal user study data
 - identify stakeholders, social relationships, actions
 - rapid application prototyping (Activity Designer)
 - visual language for design (PBD, storyboarding)

My Experience

Context-triggered ESM Tool

- **Features**
 - multi-media capture (audio, video, etc.)
 - real-time wireless connectivity/data upload
 - context-triggers using real & virtual sensors
 - modern platform support (e.g., phones)

- **Advanced sensor support**
 - scenario: fitness study
 - detect: running
 - wait to prompt...
 - scenario: elder care study
 - detect: medication bottle picked up
 - trigger survey if past lunch & not detected

- **Release for public use**

Activity Designer

Informal Prototyping for Activity-based UIs

- Create activity-based scenes
 - actions in a particular situation (e.g., running in the park at lunch)
- Visually create status properties & visual feedback
 - number of times someone ran
 - use scenes & properties as conditions on storyboard transitions
- Iterative design
 - Wizard of Oz (WoZ)
 - test in field w/ actual devices

- Fast & fluid design
 - no special hardware required
 - need not be programmer

Visual Language for Property Computation
Digital Simplicity Summary

- Solve high value problems, *simplifying* our lives
 - use long-lived activity as the primary organizing focus
- Solve these problems *simply* using
 - inference: activities, locations, & social context
 - tools: for design & user studies that leverage context-tagged in-situ activities
 - natural UIs: improve recognition using context

ActivityDesign

Activity-Centric Prototyping of Ubicomp Applications for Long-Term, Everyday Activities

Yang Li & James A. Landay

DUB Group
Computer Science & Engineering
University of Washington
Intel Research Seattle

© 2006 Copyright is held by the authors

Digital Simplicity Through Activity-Based Computing

James A. Landay

Associate Professor

Computer Science & Engineering

University of Washington

Intel Research Seattle