Hall of Shame

- Does not follow OBVIOUS LINKS (K10) pattern
- Navigation separate from content – no links on right
- Why is this about Fry’s ISP? – I’m looking for a store!

Hall of Fame or Hall of Shame?

• frys.com

Hall of Shame

• HFS Husky Card Account Page

Hall of Fame or Hall of Shame?

• HFS Husky Card Account Page
 – violates PREVENTING ERRORS (K12)
Hall of Fame or Shame?

- The page you get if you get it wrong

Hall of Shame

- The page you get if you get it wrong
 - what is Blackboard Academic Suite?
 - where am I?
 - Is this really the UW site?
 - violates SITE BRANDING (E1)
 - what is the error?
 - violates MEANINGFUL ERROR MESSAGES (K13)

Outline

- Review
- Why do user testing?
- Choosing participants
- Designing the test
- Collecting data
- Administrivia
- Analyzing the data
- Course survey

Rapid Prototyping Review

- Informal prototyping tools bridge the gap between paper & high-fi tools
- High-fi UI tools good for testing more developed UI ideas
- Two styles of tools
 - “Prototyping” vs. UI builders
 - what is the difference?
- Both types generally ignore the “insides” of application → this is research

Why do User Testing?

- Can’t tell how good UI is until?
- Other methods are based on evaluators who
 - may know too much
 - may not know enough (about tasks, etc.)
- Hard to predict what real users will do
Choosing Participants

- Representative of target users
 - job-specific vocab / knowledge
 - tasks
- Approximate if needed
 - system intended for doctors?
 - get medical students
 - system intended for engineers?
 - get engineering students
- Use incentives to get participants

Ethical Considerations

- Sometimes tests can be distressing
 - users have left in tears
- You have a responsibility to alleviate
 - make voluntary with informed consent
 - avoid pressure to participate
 - let them know they can stop at any time
 - stress that you are testing the system, not them
 - make collected data as anonymous as possible
- Often must get human subjects approval

User Test Proposal

- A report that contains
 - objective
 - description of system being testing
 - task environment & materials
 - participants
 - methodology
 - tasks
 - test measures
- Get approved & then reuse for final report
- Seems tedious, but writing this will help “debug” your test

Selecting Tasks

- Should reflect what real tasks will be like
- Tasks from analysis & design can be used
 - may need to shorten if
 - they take too long
 - require background that test user won’t have
- Try not to train unless that will happen in real deployment
- Avoid bending tasks in direction of what your design best supports
- Don’t choose tasks that are too fragmented
 - e.g., phone-in bank test

Deciding on Data to Collect

- Two types of data
 - process data
 - observations of what users are doing & thinking
 - bottom-line data
 - summary of what happened (time, errors, success)
 - i.e., the dependent variables

Which Type of Data to Collect?

- Focus on process data first
 - gives good overview of where problems are
- Bottom-line doesn’t tell you where to fix
 - just says: “too slow”, “too many errors”, etc.
- Hard to get reliable bottom-line results
 - need many users for statistical significance
The “Thinking Aloud” Method

• Need to know what users are thinking, not just what they are doing
• Ask users to talk while performing tasks
 – tell us what they are thinking
 – tell us what they are trying to do
 – tell us questions that arise as they work
 – tell us things they read
• Make a recording or take good notes
 – make sure you can tell what they were doing

Thinking Aloud (cont.)

• Prompt the user to keep talking
 – “tell me what you are thinking”
• Only help on things you have pre-decided
 – keep track of anything you do give help on
• Recording
 – use a digital watch/clock
 – take notes, plus if possible
 • record audio & video (or even event logs)

Using the Test Results

• Summarize the data
 – make a list of all critical incidents (CI)
 • positive & negative
 – include references back to original data
 – try to judge why each difficulty occurred
• What does data tell you?
 – UI work the way you thought it would?
 – users take approaches you expected?
 – something missing?

Using the Results (cont.)

• Update task analysis & rethink design
 – rate severity & ease of fixing CIs
 – fix both severe problems & make the easy fixes
• Will thinking aloud give the right answers?
 – not always
 – if you ask a question, people will always give an answer, even if it is has nothing to do with facts
 • panty hose example
 – try to avoid specific questions

Measuring Bottom-Line Usability

• Situations in which numbers are useful
 – time requirements for task completion
 – successful task completion
 – compare two designs on speed or # of errors
• Ease of measurement
 – time is easy to record
 – error or successful completion is harder
 • define in advance what these mean
• Do not combine with thinking-aloud. Why?
 – talking can affect speed & accuracy

Video of a Test Session

http://www.maskery.ca/testvideo/webdemo1.html
http://www.maskery.ca/testvideo/webdemo3.html
http://dmc-av.cj1042.umn.edu/usability.ram
Administrivia

- Assignment #6 due Fri in email at 5PM – MUST also be on your web site – needed by others in the class
- Heuristic Evaluation assignment due at start of class on Tue (meet in the lab again)
- Posters due next Wed at 3 PM
- Final presentations next Thursday
- Class presentations will be attended by industry reps
 – I’m catering lunch afterwards if you can stay

Analyzing the Numbers

- Example: trying to get task time <=30 min.
 – test gives: 20, 15, 40, 90, 10, 5
 – mean (average) = 30
 – median (middle) = 17.5
 – looks good!
- Wrong answer, not certain of anything!
- Factors contributing to our uncertainty:
 – small number of test users (n = 6)
 – results are very variable (standard deviation = 32)
 • std. dev. measures dispersal from the mean

Analyzing the Numbers (cont.)

- This is what statistics is for
- Crank through the procedures and you find
 – 95% certain that typical value is between 5 & 55

Analyzing the Numbers (cont.)

<table>
<thead>
<tr>
<th>Participant #</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- number of participants: 6
- mean: 30.0
- median: 17.0
- std dev: 31.8
- standard error of the mean = std dev / sqrt (number of samples) = 13.0
- typical values will be mean +/- 2 * standard error = 4 to 56!
- what is plausible? = confidence (alpha=5%, std dev, sample size) = 25.6 -> 95% confident between 5 & 56

Analyzing the Numbers (cont.)

- This is what statistics is for
- Crank through the procedures and you find
 – 95% certain that typical value is between 5 & 55
- Usability test data is quite variable
 – need lots to get good estimates of typical values
 – 4 times as many tests will only narrow range by 2x
 • breadth of range depends on sqrt of # of test users
 – this is when online methods become useful
 • easy to test w/ large numbers of users

Measuring User Preference

- How much users like or dislike the system
 – can ask them to rate on a scale of 1 to 10
 – or have them choose among statements
 • “best UI I’ve ever...”, “better than average”...
 – hard to be sure what data will mean
 • novelty of UI, feelings, not realistic setting ...
- If many give you low ratings -> trouble
- Can get some useful data by asking
 – what they liked, disliked, where they had trouble, best part, worst part, etc. (redundant questions are OK)
Comparing Two Alternatives

- **Between groups experiment**
 - two groups of test users
 - each group uses only 1 of the systems
- **Within groups experiment**
 - one group of test users
 - each person uses both systems
 - can’t use the same tasks or order (learning)
 - best for low-level interaction techniques
- Between groups requires many more participants than within groups
- See if differences are statistically significant
 - assumes normal distribution & same std. dev.

Experimental Details

- Order of tasks
 - choose one simple order (simple -> complex)
 - unless doing within groups experiment
- Training
 - depends on how real system will be used
- What if someone doesn’t finish
 - assign very large time & large # of errors or remove & note
- Pilot study
 - helps you fix problems with the study
 - do 2, first with colleagues, then with real users

Instructions to Participants

- Describe the purpose of the evaluation
 - “I’m testing the product; I’m not testing you”
- Tell them they can quit at any time
- Demonstrate the equipment
- Explain how to think aloud
- Explain that you will not provide help
- Describe the task
 - give written instructions, one task at a time

Details (cont.)

- Keeping variability down
 - recruit test users with similar background
 - brief users to bring them to common level
 - perform the test the same way every time
 - don’t help some more than others (plan in advance)
 - make instructions clear
- Debriefing test users
 - often don’t remember, so demonstrate or show video segments
 - ask for comments on specific features
 - show them screen (online or on paper)

Reporting the Results

- Report what you did & what happened
- Images & graphs help people get it!
- Video clips can be quite convincing

Summary

- User testing is important, but takes time/effort
- Early testing can be done on mock-ups (low-fi)
- Use ????? tasks & ????? participants
 - real tasks & representative participants
- Be ethical & treat your participants well
- Want to know what people are doing & why, so?
 - collect process data
- Using bottom line data requires ???? to get statistically reliable results
 - more participants
- Difference between between & within groups?
 - between groups: everyone participates in one condition
 - within groups: everyone participates in multiple conditions
Next Time

- In lab group heuristic evaluation summary