Introduction & Course Overview

CS490f

Prof. James A. Landay
University of Washington
Autumn 2006

September 29, 2006

UI Hall of Fame or Hall of Shame?

Hall of Shame!

- Doesn’t help user accomplish their task
 - why did they come to the site?
- Takes too long
 - most visitors will leave & never return
- May be valid for entertainment, art, or branding sites

Hall of Shame!

- Page setup for printing in IE5
- Problems
 - codes for header & footer information
 - requires recall!
 - want recognition
 - no equivalent GUI!
 - help is the way to find out, but not obvious

Hall of Fame or Shame?

- Page setup for printing in IE5
Introduction & Course Overview

CS490f

Prof. James A. Landay
University of Washington
Autumn 2006

September 29, 2006

Outline

• Who are we?
• HCI introduction
• Course overview & schedule
• Introductions

Who are we?

• James Landay
 – Associate Professor in CSE at the University of Washington
 – formerly professor in EECS at UC Berkeley
 – spent last 3 years as Director of Intel Research Seattle (ubicomp lab)
 – Ph.D. in CS from Carnegie Mellon ‘96
 – HCI w/ focus on informal input (pens, speech, etc.),
 Web design (tools, patterns, etc.) & Ubiquitous Computing
 – founded NetRaker, leader in Web experience management
 – Now subsidiary of KeyNote Systems
 – Co-authored The Design of Sites with D. van Duyne & J. Hong

• Kate Everitt
 – Ph.D. student in CSE
 – BSc in Computing & Info Science from Queen’s University
 – MS in CS from UC Berkeley
 – HCI w/ focus on computer support cooperative work & speech UIs

Human-Computer Interaction (HCI)

• Human
 – the end-user of a program
 – the others in the organization
• Computer
 – the machine the program runs on
 – often split between clients & servers
• Interaction
 – the user tells the computer what they want
 – the computer communicates results

HCI Approach to UI Design

Factors Influence Each Other

“People change their knowledge as they perform, i.e., they learn”
User Interfaces (UIs)

• Part of application that allows people
 – to interact with computer
 – to carry out their task

• User vs. Customer vs. Client
 – user is a term only used by 2 industries → bad!
 – customer – person who will use the product you build
 – client – the company who is paying you to build it

HCI = design, prototyping, evaluation, & implementation of UIs

Why is HCI Important?

• Major part of work for “real” programs
 – approximately 50%

• Bad user interfaces cost
 – money
 • 5% satisfaction → up to 85% profits
 • finding problems early makes them easier to fix
 – reputation of organization (e.g., brand loyalty)
 – lives (Therac-25)

• User interfaces hard to get right
 – people are unpredictable
 – intuition of designers often wrong

Who Builds UIs?

• A team of specialists (ideally)
 – graphic designers
 – interaction / interface designers
 – information architects
 – technical writers
 – marketers
 – test engineers
 – usability engineers
 – software engineers
 – users

How to Design and Build UIs

• UI Development process

 • Usability goals
 • User-centered design
 • Task analysis & contextual inquiry
 • Rapid prototyping
 • Evaluation
 • Programming

User Interface Development Process

Iteration

At every stage!
Design

• Design is driven by requirements
 – what the artifact is for
 – not how it is to be implemented
 – e.g., PDA not as important as “mobile” app.
• A design represents the artifact
 – for UIs these representations include:
 • screen sketches or storyboards
 • flow diagrams/outline showing task structure
 • executable prototypes
 – representations simplify

Web Design Representations

Site Maps

Storyboards

Schematics

Mock-ups

Usability

According to the ISO:
The effectiveness, efficiency, and satisfaction with which specified users achieve specified goals in particular environments

• This does not mean you have to create a “dry” design or something that is only good for novices – it all depends on your goals

Usability Goals

• Set goals early & later use to measure progress
• Goals often have tradeoffs, so prioritize
• Example goals
 – Learnable
 • faster the 2nd time & so on
 – Memorable
 • from session to session
 – Flexible
 • multiple ways to accomplish tasks
 – Efficient
 • perform tasks quickly
 – Robust
 • minimal error rates
 – Option to recover
 – Pleasing
 • high user satisfaction
 – Fun

User-centered Design

“Know thy User”

• Cognitive abilities
 – perception
 – physical manipulation
 – memory
• Organizational / job abilities
• Keep users involved throughout
 – developers working with target users
 – think of the world in users terms
 – not technology-centered/feature driven

Task Analysis & Contextual Inquiry

• Observe existing work practices
• Create examples and scenarios of actual use
• “Try-out” new ideas before building software
Rapid Prototyping

- Build a mock-up of design so you can test
- Low fidelity techniques
 - paper sketches
 - cut, copy, paste
- Interactive prototyping tools
 - HTML, Visual Basic, Flash, DENIM, etc.
- UI builders
 - Visual Studio .NET, JBuilder...

Evaluation

- Test with real users (participants)
 - w/ interactive prototype
 - low-fi with paper “computer”
- Build models
 - GOMS
- Low-cost techniques
 - expert evaluation
 - walkthroughs
 - online testing

Goals of the Course

1) Learn to design, prototype, & evaluate UIs
 - the needs & tasks of prospective users
 - cognitive/perceptual constraints that affect design
 - technology & techniques used to prototype UIs
 - techniques for evaluating a user interface design
 - importance of iterative design for usability
 - how to work together on a team project
 - communicate your results to a group
 - key to your future success

2) Understand where technology is going & what UIs of the future might be like

Course Format

- Interactive lectures
- Quarter long project & homeworks
- Readings
- All material is online
 - slides, exercises, readings, schedule
 - http://www.cs.washington.edu/cs490f
- Have fun & participate!

How CSE490f Fits into CS Curriculum

- Most courses for learning technology
 - compilers, operating systems, databases, etc.
- CSE490f concerned w/ design & evaluation
 - technology as a tool to evaluate via prototyping
 - skills will become very important upon graduation
 - complex systems, large teams
 - don’t look for large immediate impact in other CS courses

Project Description

- Each of you will propose an interface idea
 - fixing something you don’t like or a new idea
- Groups
 - 4 students to a group
 - work with students w/ different skills/interests
 - groups meet with teaching staff every 2 weeks
 - industrial mentors may also meet with teams
- Cumulative
 - apply several HCI methods to a single interface
Project Process Overview

- Project proposal (individual) due Tuesday
- Break-up into groups next Thursday
- Project task analysis & “sketches”
 - i.e., rough proposals that can & will change
 - based on field work with ESM tool on phone
- In class presentations & critiques
- Low fidelity prototyping & user testing
- In class presentations & critiques
- Rapid prototype using tools & user test
- Heuristic evaluations (individual)
- Heuristic evaluation summary
- Final presentations & project fair with industry guests

What is the 2nd quarter Class?

- Takes up where this course stops
- Focus on
 - executable prototypes
 - UI toolkits & implementation
 - advanced user testing
 - even more project focused

Project Examples (cont.)

- SiteSketch
 - web page design
 - sketch-based

SiteSketch

Project Examples (cont.)

- Clothes Shopper
 - online shopping
 - knows your prefs & sizes

Clothes Shopper
Project Examples (cont.)

• Electronic book reader
 – take advantage of all the online texts on the net

Electronic Book Reader

Project Examples (cont.)

• Nutrition tracker

Nutrition Tracker

Project Examples (cont.)

• cULzine
 – recipe tool for the home

cULzine
Project Examples (cont.)

- Read WWW over phone
 - find structure in pages & build voice menus
 - navigation problem
 - cache common paths & reorder?
- PDA brainstorming tool
 - small portable computers in a group meeting (say Palm Pilots)

Project Examples (cont.)

- Runner’s training log
 - input daily workouts
 - reports
 - reminders
- PDA for shopping
 - scan in UPC & tells you whether a good price
- Home entertainment control - “no more remotes”

Total Entertainment Control

PDA Baseball Scorekeeper

PalmStock
Otto: Location-based Photos

Bus Buddy

Ubiquitous Computing Project Themes

• Location-enhanced computing
 – phones that are aware of their location
 – past examples include car navigation, Trippin’, finding nearby restaurants, etc

• Activity-based computing
 – applications that use inference of human physical activity to enhance our lives
 – helping care for an elder
 – helping people stay fit
 • exercise & nutrition

• Ubiquitous RFID
 – tags & readers

Administrivia

• Registration
 – limited by room and project constraints to 32
 – appeal email to me if not enrolled (due today at 5 PM)
 – tell us why you should be in the course
 • background, interests, what you can contribute
 – will email admits by Monday at 5 PM

• Roll
 • James’ office hours
 – Wed. 9:30-10:30 AM (642 Allen Center)
 – Mon. 3-4 PM online (send Kate Yahoo/MS/Google ID)
 – email katherine@cs.washington.edu for appointments at other times

Administrivia (cont.)

• Teaching assistants
 – Katherine Everitt
 • last name at cs.washington.edu
 • O.H.: TBA in 409 Allen Center

• Discussion sections
 – TBD – please respond to Kate’s email
 – new material will be covered in discussion
  attend
Books

- *The Design of Sites* by van Duyne, Landay, & Hong
 - I’ll give you copies of the 4-5 chapters we will use
- We will also hand out other papers, give you web links, & refer to lecture slides
- Recommended textbooks
 - Human-Computer Interaction by Alan Dix, et. al., 3rd edition, 2003
 - order from Amazon.com (link off class web page)
- Other recommended books on web page

Assignments (tentative)

- Individual
 - 3 written + one talk each
- Group
 - 4 written assignments
 - 3 presentation/demos with the write-ups
 - all group work handed in on Web (group web site)

Grading

- A combination of
 - midterm (15%)
 - final (25%)
 - individual assignments (15%)
 - group project (40%)
 - demos/presentation (group component)
 - project write-ups and exercises
 - ratings given by other team members & class
 - in class participation (5%)
- No curve

Tidbits

- Late Policy
 - no lates on group assignments
 - individual assignments lose one letter grade/day
- Cheating policy
 - will get you an F in the course
 - more than once can get you dismissed
- More information (syllabus/schedule/slides)
 - http://www.cs.washington.edu/cs490f

Summary

- Project proposal due at start of lecture on Tuesday
- Next lecture on History of HCI
- Read
 - *As We May Think* by Vannevar Bush
 - *Tools For Thought* Ch 9 (Engelbart Demo)