
Natural language is a
programming language

Michael D. Ernst
UW CSE

Joint work with Arianna Blasi, Juan Caballero,
Sergio Delgado Castellanos, Alberto Goffi,
Alessandra Gorla, Victoria Lin, Deric Pang,
Mauro Pezzè, Irfan Ul Haq, Kevin Vu, Luke

Zettlemoyer, and Sai Zhang

Questions about software

• How many of you have used software?

• How many of you have written software?

What is software?

What is software?

• A sequence of instructions that perform some task

What is software?

An engineered object amenable to formal analysis

• A sequence of instructions that perform some task

What is software?

• A sequence of instructions that perform some task

What is software?

• A sequence of instructions that perform some task

What is software?

• A sequence of instructions that perform some task

• Test cases

• Version control history

• Issue tracker

• Documentation

• …

How should it be analyzed?

Analysis of a natural object

• Machine learning over executions

• Version control history analysis

• Bug prediction

• Upgrade safety

• Prioritizing warnings

• Program repair

Specifications are needed;
Tests are available but ignored
• Many papers start:

“Given a program and its specification…”

• Formal verification process:
• Write the program

• Test the program

• Verify the program, ignoring testing artifacts

Programmers embed semantic info in tests

Goal: translate tests into specifications,
by machine learning over executions

Dynamic detection
of likely invariants
• Observe values that the program computes

• Generalize over them via machine learning

• Result: invariants (as in asserts or specifications)
• x > abs(y)

• x = 16*y + 4*z + 3

• array a contains no duplicates

• for each node n, n = n.child.parent

• graph g is acyclic

• Unsound, incomplete, and useful

https://plse.cs.washington.edu/daikon/
[ICSE 1999]

Applying NLP to software engineering

Problems

inadequate
diagnostics

incorrect
operations

missing
tests

unimplemented
functionality

NL sources

error
messages

variable
names

code
comments

user
questions

NLP techniques

document
similarity

word
semantics

parse
trees

translation

Analyze
existing
code

Generate
new
code

Applying NLP to software engineering

Problems

inadequate
diagnostics

incorrect
operations

missing
tests

unimplemented
functionality

NL sources

error
messages

variable
names

code
comments

user
questions

NLP techniques

document
similarity

word
semantics

parse
trees

translation

[ISSTA 2015]

Inadequate diagnostic messages

Scenario: user supplies a wrong configuration option
--port_num=100.0

Problem: software issues an unhelpful error message

• “unexpected system failure”

• “unable to establish connection”

Hard for end users to diagnose

Goal: detect such problems before shipping the code

• Better message: “--port_num should be an integer”

Challenges for proactive detection
of inadequate diagnostic messages

• How to trigger a configuration error?

• How to determine the inadequacy of a diagnostic message?

• How to trigger a configuration error?

• How to determine the inadequacy of a diagnostic message?

ConfDiagDetector’s solutions

‒ Configuration mutation + run system tests

‒ Use a NLP technique to check its semantic meaning

system testsconfiguration + failed tests ≈ triggered errors

Diagnostic messages
output by failed tests

User manual

Similar semantic meanings?

(Assumption: a manual,
webpage, or man page exists.)

(We know the root cause.)

When is a message adequate?

• Contains the mutated option name or value [Keller’08,
Yin’11]

Mutated option:

--percentage-split

Diagnostic message:

“the value of percentage-split should be > 0”

• Similar semantic meaning as the manual description
Mutated option:

--fnum

Diagnostic message:

“Number of folds must be greater than 1”

User manual description of --fnum:

“Sets number of folds for cross-validation”

Classical document similarity:
TF-IDF + cosine similarity
1. Convert document into a real-valued vector

2. Document similarity = vector cosine similarity

• Vector length = dictionary size, values = term frequency (TF)
• Example: [2 classical, 8 document, 3 problem, 3 values, …]

• Problem: frequent words swamp important words

• Solution: values = TF x IDF (inverse document frequency)
• IDF = log(total documents / documents with the term)

Problem: does not work well on very short documents

Text similarity technique [Mihalcea’06]

Manual description
A message

The documents have similar semantic meanings
if many words in them have similar meanings

The program goes wrong

The software fails

Example:

1. Remove all stop words
2. For each word in the diagnostic message,

try to find similar words in the manual
3. Two sentences are similar, if “many” words

are similar between them.

Results

• Reported 25 missing and 18 inadequate messages
in Weka, JMeter, Jetty, Derby

• Validation by 3 programmers:
• 0% false negative rate

• Tool says message is adequate, humans say it is inadequate

• 2% false positive rate
• Tool says message is inadequate, humans say it is adequate

• Previous best: 16%

Related work

Configuration error diagnosis techniques
• Dynamic tainting [Attariyan’08], static tainting

[Rabkin’11], Chronus [Whitaker’04]

Troubleshooting an exhibited error rather than detecting
inadequate diagnostic messages

Software diagnosability improvement techniques
• PeerPressure [Wang’04], RangeFixer [Xiong’12], ConfErr

[Keller’08] and Spex-INJ [Yin’11], EnCore [Zhang’14]

Requires source code, usage history, or OS-level support

Applying NLP to software engineering

Problems

inadequate
diagnostics

incorrect
operations

missing
tests

unimplemented
functionality

NL sources

error
messages

variable
names

code
comments

user
questions

NLP techniques

document
similarity

word
semantics

parse
trees

translation

[WODA 2015]

Undesired variable interactions

int totalPrice;
int itemPrice;
int shippingDistance;

totalPrice = itemPrice + shippingDistance;

• The compiler issues no warning

• A human can tell the abstract types are different

Idea:

• Cluster variables based on usage in program operations

• Cluster variables based on words in variable names

Differences indicate bugs or poor variable names

Undesired variable interactions

int totalPrice;
int itemPrice;
int shippingDistance;

totalPrice = itemPrice + shippingDistance;

• The compiler issues no warning

• A human can tell the abstract types are different

Idea:

• Cluster variables based on words in variable names

• Cluster variables based on usage in program operations

Differences indicate bugs or poor variable names

Undesired interactions

distance itemPrice tax_rate

miles shippingFee percent_complete

Undesired interactions

distance itemPrice tax_rate

miles shippingFee percent_complete

itemPrice + distance

Undesired interactions

distance itemPrice tax_rate

miles shippingFee percent_complete

int float

Program types don’t help

Undesired interactions

distance itemPrice tax_rate

miles shippingFee percent_complete

Language indicates the problem

Variables

Variable clustering

Cluster based on
interactions:
operations

Variable clustering

Cluster based on
language:
variable names

Variable clustering

Cluster based on
language:
variable names

Cluster based on
interactions:
operations

Problem
Actual algorithm:
1. Cluster based on operations
2. Sub-cluster based on names
3. Rank an operation cluster as suspicious

if it contains well-defined name sub-clusters

Clustering based on operations

Abstract type inference [ISSTA 2006]

int totalCost(int miles, int price, int tax) {

int year = 2016;

if ((miles > 1000) && (year > 2000)) {

int shippingFee = 10;

return price + tax + shippingFee;

} else {

return price + tax;

}

}

Clustering based on operations

Abstract type inference [ISSTA 2006]

int totalCost(int miles, int price, int tax) {

int year = 2016;

if ((miles > 1000) && (year > 2000)) {

int shippingFee = 10;

return price + tax + shippingFee;

} else {

return price + tax;

}

}

Clustering based on variable names

Compute variable name similarity for var1 and var2

1. Tokenize each variable into dictionary words
• in_authskey15 ⇒ {“in”, “authentications”, “key”}

• Expand abbreviations, best-effort tokenization

2. Compute word similarity
• For all w1 ∈ var1 and w2 ∈ var2, use WordNet (or edit distance)

3. Combine word similarity into variable name similarity
• maxwordsim(w1, var2) = max wordsim(w1, w2)

• varsim(var1, var2) = average maxwordsim(w1, var2)

w2 ∈ var2

w1 ∈ var1

Results

• Ran on grep and Exim mail server

• Top-ranked mismatch indicates
an undesired variable interaction in grep
if (depth < delta[tree->label])

delta[tree->label] = depth;

• Loses top 3 bytes of depth

• Not exploitable because of guards elsewhere in
program, but not obvious here

Related work

• Reusing identifier names is error-prone [Lawrie
2007, Deissenboeck 2010, Arnaoudova 2010]

• Identifier naming conventions [Simonyi]

• Units of measure [Ada, F#, etc.]

• Tokenization of variable names [Lawrie 2010,
Guerrouj 2012]

Applying NLP to software engineering

Problems

inadequate
diagnostics

incorrect
operations

missing
tests

unimplemented
functionality

NL sources

error
messages

variable
names

code
comments

user
questions

NLP techniques

document
similarity

word
semantics

parse
trees

translation
[ISSTA 2016]

Test oracles (assert statements)

A test consists of
• an input (for a unit test, a sequence of calls)
• an oracle (an assert statement)

Programmer-written tests
• often trivial oracles, or too few tests

Automatic generation of tests:
• inputs are easy to generate
• oracles remain an open challenge

Goal: create test oracles
from what programmers already write

Automatic test generation

• Code under test:
public class FilterIterator implements Iterator {

public FilterIterator(Iterator i, Predicate p) {…}

public Object next() {…}

…

}

• Automatically generated test:
public void test {

FilterIterator i = new FilterIterator(null, null);

i.next();

}

Throws NullPointerException!
Did the tool discover a bug?

It could be:
1. Expected behavior
2. Illegal input
3. Implementation bug

/** @throws NullPointerException if either

* the iterator or predicate are null */

Automatically generated tests

• A test generation tool outputs:
• Passing tests – useful for regression testing
• Failing tests – indicates a program bug

• Without a specification, the tool guesses
whether a given behavior is correct

• False positives: report a failing test
that was due to illegal inputs

• False negatives: fail to report a failing test
because it might have been due to illegal inputs

• Results: Reduced false positive test failures in
EvoSuite by 1/3 or more

Programmers write code comments

Javadoc is standard procedure
documentation

/**

* Checks whether the comparator is now

* locked against further changes.

*

* @throws UnsupportedOperationException

* if the comparator is locked

*/

protected void checkLocked() {...}

Javadoc comment and assertion

class MyClass {

ArrayList allFoundSoFar = …;

boolean canConvert(Object arg) { … }

/** @throws IllegalArgumentException if the
* element is not in the list and is not
* convertible. */
void myMethod(Object element) { … }

}

Condition for exception: myMethod should throw iff …

(!allFoundSoFar.contains(element)
&& !canConvert(element))

Nouns = objects, verbs = operations
S

NP

VP

V

ADJP

ADJ

PP

The element is greater than the current maximum.

NPPX

elt compareTo()>0 currentMax

elt.compareTo(currentMax) > 0

noun verb noun

Text to code: Toradocu algorithm

1. Parse @param, @return, and @throws expressions
using the Stanford Parser
• Parse tree, grammatical relations, cross-references

• Challenges:
• Often not a well-formed sentence; code snippets as nouns/verbs

• Referents are implicit, assumes coding knowledge

2. Match each subject to a Java element
• Pattern matching

• Lexical similarity to identifiers, types, documentation

3. Match each predicate to a Java element

4. Create assert statement from expressions and methods

Results

On 381 @throws clauses:

• 82% precision

• 57% recall

Can tune parameters to favor either metric

Pattern-matching and pre-processing are important

Current work:

• @param and @return tags

• Integrate with Randoop test generator

Related work
Heuristics

• JCrasher, Crash’n’Check (Csallner, and Smaragdakis. ICSE ’05)
• Randoop (Pacheco, Lahiri, Ernst, and Ball. ICSE ’07)

Specifications
• ASTOOT (Doong, and Frankl. TOSEM ’94)
• Models, contracts, …

Properties
• Cross-checking oracles (Carzaniga, Goffi, Gorla, Mattavelli, and

Pezzè. ICSE ’14)
• Metamorphic testing (Chen, Kuo, Tse, and Zhou. STEP ’13)
• Symmetric testing (Gotlieb. ISSRE ’03)

Natural language documentation
• @tComment (Tan, Marinov, Tan, and Leavens. ICST ’12)
• aComment (Tan, Zhou, and Padioleau. ICSE ’11)
• iComment (Tan, Yuan, Krishna, and Zhou. SOSP ’07)

Applying NLP to software engineering

Problems

inadequate
diagnostics

incorrect
operations

missing
tests

unimplemented
functionality

NL sources

error
messages

variable
names

code
comments

user
questions

NLP techniques

document
similarity

word
semantics

parse
trees

translation

Machine translation

English: “My hovercraft is full of eels.”

Spanish: “Mi aerodeslizador está lleno de anguilas.”

English: “Don’t worry.”

Spanish: “No te preocupes.”

Sequence-to-sequence recurrent
neural network translators

My ishover-
craft

full of eels . <START>

Mi

Mi

aerodeslizador

aerodeslizador

input layer

output layer

hidden layer

…

…

attention mechanism

Input, hidden, and output functions
are inferred from training data
using probability maximization.

Tellina: text to commands

• Training data: ~8000 ⟨text, command⟩ pairs
• Collected manually from webpages, plus cleaning

• Uses of find and English descriptions
• Compound commands: (), &&, ||

• Nesting: |, $(), <()

• Strings are opaque; no command interpreters (awk, sed)

• No bash compound statements (for)

Results

Accuracy for Tellina’s first output:

• Structure of command (without constants): 69%

• Full command (with constants): 30%

User experiment:

• Tellina makes users 22% more efficient
• Even though it lies 1/3 of the time

• Qualitative feedback
• Most participants wanted to continue using Tellina (5.8/7 Likert scale)
• Partially-correct answers were helpful, not too hard to correct
• Output bash commands are sometimes not syntactic or subtly wrong
• Needs explanation of meaning of output bash commands

Related work

Neural machine translation
• Sequence-to-sequence learning with neural nets

[Sutskever 2014]
• Attention mechanism [Luong 2015]

Semantic parsing
• Translating natural language to a formal representation

[Zettlemoyer 2007, Pasupat 2016]

Translating natural language to DSLs
• If-this-then-that recipes [Quirk 2015]
• Regular expressions [Locascio 2016]
• Text editing, flight queries [Desai 2016]

Other software engineering projects

• Analyzing programs before they are written

• Gamification (crowd-sourcing) of verification

• Evaluating and improving fault localization

• Pluggable type-checking for error prevention

• … many more: systems, synthesis, verification, etc.

UW is hiring! Faculty, postdocs, grad students

Applying NLP to software engineering

Problems

inadequate
diagnostics

incorrect
operations

missing
tests

unimplemented
functionality

NL sources

error
messages

variable
names

code
comments

user
questions

NLP techniques

document
similarity

word
semantics

parse
trees

translation

Machine learning + software engineering

• Software is more than source code

• Formal program analysis is useful, but insufficient

• Analyze and generate all software artifacts

A rich space for further exploration

