## IRIS PATIENT IDENTIFICATION SYSTEM

#### Graham Blair, Angela Liu, Mark Tull

Winter 2013 | CSE 490d / HCDE 595d with iRespond.org



# Problem









## 2 Part Problem

- 1. **Identification** of patients in developing world is very difficult.
- 2. Medical Records in developing world are poor or non-existent and difficult to access/use.



## Patient Identification

- Very difficult in developing countries
  - Lack of infrastructure
    - Lack of national accounting/tracking of citizenry (eg, USA SSN)
    - Lack of photo ID cards
      - means of authenticating cards...
  - Linguo-Cultural hurdles
    - Maybe not enough names in language/dialect to accommodate entire population



### **Medical Records**

- Often little or no records kept in developing world
  - (logistical issues)
- If records are kept, often of little use
  - Social Constraints
    - Similar to ID problems
      - (No national ID system, no photos, language, etc.)
    - <u>Additionally</u>:
      - Security/privacy concerns can cause poor record-keeping



### Medical Records (cont.)

- Paper medical records may be of low value
  - Nomadic populations, mobile providers
- Electronic Medical Records (EMRs) may be of low value (or not used) because
  - Access problems
    - poor connectivity (eg, rural areas)
  - Hardware/Software problems
    - no hardware
    - power problems









## How is identification done now?

- Frequently, by recruiting locals to help ID people
  - Translators
  - Tribal/village elders, etc.
  - "Connectors" (to use Malcolm Gladwell's term)
  - Unfortunately
    - Expensive / Difficult / Not always available
- ... It's done as best it can be per situation
  - Sadly, the results are often unsatisfactory



## Who needs this? Who will it affect?

- Healthcare Workers and Researchers in Developing World
  - Providers, Researchers
  - Analysts / Policymakers
    - BONUS: in developed world
- Funders
  - Governments, NGOs



# Solution



# **RIS**Biometric Patient ID and<br/>EMR system











## **Project Description**

### Major Components

- Device
  - Smartphone, etc.
- Fingerprint scanner
  - or other biometric
- <u>Database</u>
  - Cloud-based, primarily
    - Local: temporary, caching, etc.



• Remote: (sometimes)

## **Project Description**

### Stakeholders

- <u>iRespond</u>
  - IRIS
    - preliminary testing of some elements
  - other systems

#### Thailand

- Ministry of Public Health
- Two universities participating



## Design Challenges

- Device Agnostic
  - Browser-based
- Language Agnostic
  - Input only numerals (outside EMR)
  - Numeric-only SIDs

#### <u>Users may have <HS equivalent eduaction</u>

- GUI
- Globally scalable
  - Numeric only SIDs (can't use alpha characters)
  - Length of SIDs



## **Related Work**

ODK (Open Data Kit)

- India's UIDAI project
  - 2010: biometric backed UIDs
  - 600 million by 2016



## Findings so far

- Met with iRespond
  - Other biometrics possible in future
    - iris scanning, palm scanning , voice printing
  - Planning architecture is complicated
    - security, anonymity, scalability
      - securely assign UIDs
  - Designing UI is difficult
    - universality, language





## Architecture - Fingerprints



Lossless Image Huge!

Template File Very Small



## Architecture - Verification



## Architecture - Storage

| uid          | template    |
|--------------|-------------|
| 853461885514 | fingerprint |
|              |             |
|              |             |

| uid          | name     | dob        |
|--------------|----------|------------|
| 853461885514 | John Doe | 2012-12-21 |
|              |          |            |
|              |          |            |





## Architecture - Localization





## **Design and Evaluation**

- Prototype/UI iteration:
  - iRespond feedback
- Evaluate
  - User testing
    - locally
    - field by iRespond staff
  - Criteria
    - success/failure of functions
    - used or avoided



effect on work

# Plan for Next Quarter



## Next quarter (rough plan)

#### First

- Finish Backend Development
  - Database, interaction with fingerprint scanner, etc.
- Finish UI Design
  - Test paper prototypes in laboratory

#### Second

- Local testing of system
  - Evaluation, iteration
- Execute Field Testing
- Third



• Write-up / Present





# Questions?



#### This presentation was on the IRIS system by iRespond.

We are Graham Blair, Angela Liu, and Mark Tull.

## Thank you for your time.