
CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides
and materials

CSE 484 / CSE M 584 - Spring 2025

Admin

• Lab 1b due next Wednesday.
• Start early (hopefully already)

• Homework 1 is posted
• Should be relatively quick
• Good chance to discuss something in detail with classmates!

• Reminders:
• There are helpful exercises in your lab 1 repo!
• There is a separate writeup on the assignments page for frame pointers and

printf exploitation (no new information)

CSE 484 / CSE M 584 - Spring 2025

Threat modeling again again again

• You are taking a course that has a required assignment every
lecture.

• The course uses Gradescope to manage those assignments, which
go ‘live’ near the beginning of class, and are due at the end.

• How can you ensure you get credit for these assignments without
attending class?

• How might that approach be mitigated or detected?

CSE 484 / CSE M 584 - Spring 2025

In-class components

• Please don’t make this adversarial!

• If you come to class, complete the component during the designated
time.

• If you miss class, complete it while watching the recorded lecture.
• Don’t fill it out, and then watch lecture.

• This type of think-pair-share and discuss format has well-studied benefits
to learning
• It also is very low stakes, and takes minimal amounts of time.

CSE 484 / CSE M 584 - Spring 2025

Hardening binaries

CSE 484 / CSE M 584 - Spring 2025

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Detect overflows
3. Validate pointers
4. Address space layout randomization
5. Code analysis
6. Better interfaces
7. …

CSE 484 / CSE M 584 - Spring 2025

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

CSE 484 / CSE M 584 - Spring 2025

ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)
• (Think about how poor printf usage might help an attacker!)

CSE 484 / CSE M 584 - Spring 2025

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on
the fly
• Disclosing a single address can reveal the location of all code within a

library, depending on the ASLR implementation

• Remember our printf vulnerabilities!

CSE 484 / CSE M 584 - Spring 2025

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (execute disable) (in post-2004

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+

(10.4 for stack but not heap), Android 2.3+

CSE 484 / CSE M 584 - Spring 2025

What Does “Executable Space Protection”
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space
protection will not block control transfer!
→ return-to-libc exploits

CSE 484 / CSE M 584 - Spring 2025

return-to-libc

• Overwrite saved return address with address of any library routine

• Does not look like a huge threat?
• …

CSE 484 / CSE M 584 - Spring 2025

return-to-libc

• Overwrite saved return address with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

CSE 484 / CSE M 584 - Spring 2025

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

CSE 484 / CSE M 584 - Spring 2025

Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language
• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls
• Attack can perform arbitrary computation using no injected code at all –

return-oriented programming

• Truly, a “weird machine”

CSE 484 / CSE M 584 - Spring 2025

Return-to-libc

CSE 484 / CSE M 584 - Spring 2025

Defense: ???

• Choose a random value (Magic) at program startup

• Push that value onto the stack at the start of every function.

• Now what?

• If your adversary wants to do a classical stack-based buffer
overflow, what will happen?

• How can we use this magic value for defense?

Local
variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf Magic

CSE 484 / CSE M 584 - Spring 2025

Defense: Run-Time Checking: StackGuard

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Local
variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary

CSE 484 / CSE M 584 - Spring 2025

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Defense: Run-Time Checking: StackGuard

Local variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary

CSE 484 / CSE M 584 - Spring 2025

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
– For example, 8% for Apache Web server at one point in time

CSE 484 / CSE M 584 - Spring 2025

Defeating StackGuard
• StackGuard can be defeated

– A single memory write where the attacker controls both the value and the destination is
sufficient

foo() {

char *dst;

char buf[…];

...

strcpy(buf, readUntrustedInput());

strcpy(dst, buf);

}

Local variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary&dst

Local variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary&dst

CSE 484 / CSE M 584 - Spring 2025

Defeating StackGuard
• StackGuard can be defeated

– A single memory write where the attacker controls both the value and the destination is
sufficient

foo() {

char *dst;

char buf[…];

...

strcpy(buf, readUntrustedInput());

strcpy(dst, buf);

}

Local variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary&dst

Local variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary&dst

CSE 484 / CSE M 584 - Spring 2025

Defeating StackGuard
• StackGuard can be defeated

– A single memory write where the attacker controls both the value and the destination is
sufficient

Local
variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPbuf canary&dst

Local
variables

ret/IP
Caller’s
frame

Addr 0xFF...F

Saved FPcanary&shellcode shellcode &ret

foo() {

char *dst;

char buf[…];

...

strcpy(buf, readUntrustedInput());

strcpy(dst, buf);

CSE 484 / CSE M 584 - Spring 2025

CSE 484 / CSE M 584 - Spring 2025

Pointer integrity protections (e.g.
PointGuard, PAC, etc.)

• Attack: overwrite a pointer (heap date, ret, function pointer, etc.)

• Idea: encrypt all pointers while in memory
• Generate a random key when program is executed

• Each pointer is encrypted/XOR’d/MAC’d with this key when in memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
• If XOR/encrypt: adversary cannot predict what a corrupted pointer will do

(mostly)

• If integrity (MAC) then the program can detect a modified pointer.

CSE 484 / CSE M 584 - Spring 2025

Normal Pointer Dereference

CSE 484 / CSE M 584 - Spring 2025

CPU

Memory
Pointer

0x1234
Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer

0x1234

0x1340

Data

1. Fetch pointer value

2. Access attack code referenced

by corrupted pointer

Attack

code

[Cowan]

Modern PAC Dereference

CSE 484 / CSE M 584 - Spring 2025

CPU

Memory
MAC+ pointer

0xXX1234
Data

1. Fetch pointer

value

0x1234

2. Access data referenced by pointer
0x001234, MAC

Check MAC

0x1234 0x1340

CPU

Memory
Corrupted pointer

0xXX1234

0xXX1340

Data

Throw an error! (Terminate program)

Attack

code

1. Fetch pointer

value

0x001340, MAC’

Decrypt

Check MAC

0x9786

CFI: Control flow integrity

• Idea: enforce branches to terminate ‘where expected’
• … which is where?

• Well, at the start of functions!
• We shouldn’t ever ‘call’ into the middle of something!
• Put a special instruction at the start of every function: endbr64

• What about jumps (je,jz…)?

• … What about ret?

CSE 484 / CSE M 584 - Spring 2025

Defense: Shadow stacks

• Idea: protect the backwards edge (return addresses on the stack)!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at function
return

• 2020/2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO 5000)

CSE 484 / CSE M 584 - Spring 2025

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

CSE 484 / CSE M 584 - Spring 2025

Defense: Better string functions!

• strcpy is bad

• strncpy is… also bad (no null terminator! Returns dest!)

CSE 484 / CSE M 584 - Spring 2025

Defense: Better string functions!

• strcpy is bad

• strncpy is… also bad (no null terminator! Returns dest!)

• BSD to the rescue: strlcpy
• size_t strlcpy(char *dest, const char *src, size_t n);

• Always NUL terminates

• Returns len(src) …

CSE 484 / CSE M 584 - Spring 2025

What does a modern program do?

CSE 484 / CSE M 584 - Spring 2025

080491ad <foo>:
80491ad: 55 push %ebp
80491ae: 89 e5 mov %esp,%ebp
80491b0: 81 ec 18 01 00 00 sub $0x118,%esp
80491b6: 8b 45 08 mov 0x8(%ebp),%eax
80491b9: 83 c0 04 add $0x4,%eax
80491bc: 8b 00 mov (%eax),%eax
80491be: 50 push %eax
80491bf: 8d 85 e8 fe ff ff lea -0x118(%ebp),%eax
80491c5: 50 push %eax
80491c6: e8 95 fe ff ff call 8049060 <strcpy@plt>
80491cb: 83 c4 08 add $0x8,%esp
80491ce: 90 nop
80491cf: c9 leave
80491d0: c3 ret

0000122d <foo>:
122d: f3 0f 1e fb endbr32
1231: 55 push %ebp
1232: 89 e5 mov %esp,%ebp
1234: 53 push %ebx
1235: 81 ec 34 01 00 00 sub $0x134,%esp
123b: e8 b9 00 00 00 call 12f9 <__x86.get_pc_thunk.ax>
1240: 05 88 2d 00 00 add $0x2d88,%eax
1245: 8b 55 08 mov 0x8(%ebp),%edx
1248: 89 95 d4 fe ff ff mov %edx,-0x12c(%ebp)
124e: 65 8b 0d 14 00 00 00 mov %gs:0x14,%ecx
1255: 89 4d f4 mov %ecx,-0xc(%ebp)
1258: 31 c9 xor %ecx,%ecx
125a: 8b 95 d4 fe ff ff mov -0x12c(%ebp),%edx
1260: 83 c2 04 add $0x4,%edx
1263: 8b 12 mov (%edx),%edx
1265: 83 ec 08 sub $0x8,%esp
1268: 52 push %edx
1269: 8d 95 dc fe ff ff lea -0x124(%ebp),%edx
126f: 52 push %edx
1270: 89 c3 mov %eax,%ebx
1272: e8 49 fe ff ff call 10c0 <strcpy@plt>
1277: 83 c4 10 add $0x10,%esp
127a: 90 nop
127b: 8b 4d f4 mov -0xc(%ebp),%ecx
127e: 65 33 0d 14 00 00 00 xor %gs:0x14,%ecx
1285: 74 05 je 128c <foo+0x5f>
1287: e8 f4 00 00 00 call 1380 <__stack_chk_fail_local>
128c: 8b 5d fc mov -0x4(%ebp),%ebx
128f: c9 leave
1290: c3 ret

Our custom gcc config

Normal, reasonable gcc config, (no optimization)

Wait…

080491ad <foo>:
80491ad: 55 push %ebp
80491ae: 89 e5 mov %esp,%ebp
80491b0: 81 ec 28 01 00 00 sub $0x128,%esp
80491b6: 8b 45 08 mov 0x8(%ebp),%eax
80491b9: 83 c0 04 add $0x4,%eax
80491bc: 8b 00 mov (%eax),%eax
80491be: 83 ec 08 sub $0x8,%esp
80491c1: 50 push %eax
80491c2: 8d 85 e0 fe ff ff lea -0x120(%ebp),%eax
80491c8: 50 push %eax
80491c9: e8 92 fe ff ff call 8049060 <strcpy@plt>
80491ce: 83 c4 10 add $0x10,%esp
80491d1: 90 nop
80491d2: c9 leave
80491d3: c3 ret

080491ad <foo>:
80491ad: 55 push %ebp
80491ae: 89 e5 mov %esp,%ebp
80491b0: 81 ec 18 01 00 00 sub $0x118,%esp
80491b6: 8b 45 08 mov 0x8(%ebp),%eax
80491b9: 83 c0 04 add $0x4,%eax
80491bc: 8b 00 mov (%eax),%eax

80491be: 50 push %eax
80491bf: 8d 85 e8 fe ff ff lea -0x118(%ebp),%eax
80491c5: 50 push %eax
80491c6: e8 95 fe ff ff call 8049060 <strcpy@plt>
80491cb: 83 c4 08 add $0x8,%esp
80491ce: 90 nop
80491cf: c9 leave
80491d0: c3 ret

Attu/umnak’s gcc config Our custom gcc config

CSE 484 / CSE M 584 - Spring 2025

T_T

Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust

• What about legacy C code?

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

CSE 484 / CSE M 584 - Spring 2025

Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484 / CSE M 584 - Spring 2025

