CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs
@} evacide

re, @evacide@hachyderm.io

So much of cybersecurity is "We must secure the Orphan Crushing
Machine so that unauthorized people do not crush the orphans,’
and not "Why the fuck are you building an Orphan Crushing
Machine in the first place?"

anks to Dan Boneh, Dieter
d many others for sample slides

UW Instruction Team: David Kohlbren
Gollmann, Dan Halperin, John Manferc
and materials

Admin

/
* Lab 1a due tonight!
. Late daysC//

7 « Can use up to 3 late days on one assignment. If you hand it in later, email David.
p « 5 total across homeworks and labs

- In-class assignments f—

- As a reminder, 100% of these are required to do!
- You may hand in _up to half by the late deadline (1 week later) 6‘
- These do not interact with the lab/homework late days. /—

- HW1 out today 4
- Writing and thinking about threat modeling

Threat modeling again again

Microsoft announces a new feature: Recall!

Recall: L/

/7 - Al assistant that runs locally on the machine, no cloud/etc.

Records most actions (e.g. screenshots every few seconds as you do things,
e records file accesses, edits, etc.)

Searchable so you can do things like ask: “What was that video | watched
last wednesday about capybaras?” or “Which document had screenshots of K
the new Ul design?”

Binary exploitation closeout

Summary of problems/techniques so far

T

Classic overflow: . Variable args/printf: 5 P
Unbounded (sploit 0/1) — - Using % specifiers to read
~_~) Targeting saved return memory % »
addresses « Also to manipulate the internal
Limited overflow (sploit 2/3) — argument pointer!
Targeting saved return @
/ addresses OR frame pointers - Using %n to write to a memory
location

Remember it expects a pointer as

argument! 7
o
\

CSE 484 / CSE M 584 - Spring 2025 /i

Summary of using printf maliciously

* Printf takes a variable number of arguments
— E.g., printf(“Here’s an int: %d”, 10);
* Assumptions about input can lead to trouble
— E.g., printf(buf) when buf=“Hello world” versus when buf=“Hello world %d”

— Can be used to advance printf’s internal argument pointer

— Can read memory

e E.g., printf(“%x”) will print in hex format whatever printf’s internal argument pointer is
pointing to at the time

— Can write memory

 E.g., printf(“Hello%n”); will write “5” to the memory location specified by whatever
printf’s internal argument pointer is pointing to at the time

CSE 484 / CSE M 584 - Spring 2025

Heap buffer exploitation (exploit 5) &
S

. Read “Once upon a free()” (linked in handout)

- Read through the tmalloc.c implementation

- Itis a complete malloc!
- Manages things in ‘arena’

- Section will have exercises to walk you through the details
N

What is interesting about exploit 5?

- Advanced exploitation repurposes existing code to do something
new, not what it was intended for.

(- “Weird machines’{is a recurring conceptual tool.
-7

Exploits 5 and 6 are a great introduction to this concept.

Other classic vulnerabilities

L o
Another Class of Vulnerability: O*%
o) S ;L

long long len”= get int from user();
char *p = get_string_from_user(); size t len = get _int from user();
int32_t buflen = sizeof(buf); p\- P char *buf;
7! 3f (len > buflen) { X buf = malloc(len+5%; (—
% error("length too large”); «——”7 .’
return; read(fd, buf, len);
rencoy G, () o |
} memcpy (buf,(p,Yylen); Snippet 2

T o
\/ \O

Snippet 1 N (L
void *memcpy(void *dst, const void * sr‘c,n);

typedef unsigned int size t;

CSE 484 / CSE M 584 - Spring 2025

Implicit Cast

char buf[80];
void vulnerable() { (K;

/z?,long long len = get _int from user();

char *p = get string from_ user();

4 int32_t buflen = sizeof(buf); « Iflenis negative
7

/’i?-gien > btgflen) {) * Then len > buflen may pass
e:‘;?cz(;nl.e”gth too large”); - Any memcpy may copy huge amounts of input
} ' into buf.

memcpy (buf, p, len);

Snippet 1

void *memcpy(void *dst, const void * src,f size_t n);

typedef unsigned int size t;

CSE 484 / CSE M 584 - Spring 2025

Integer Overflow

-
size_t len = get int from_user();
What if len is large (e.g., len = char *buf;
OXFFFFFFFF)? _~7 buf = malloc(len+5);
Then len + 5 = 4 (on many platforms) read(fd, buf, len);
Result: Allocate a 4-byte buffer, then read a / 7 /
lot of data into that buffer. |

Snippet 2

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size t;

CSE 484 / CSE M 584 - Spring 2025

Another Type of Vulnerability
Consider this code,w:

O
if (check user perms 4, WRITE OK) != 0) {
exit(l), // user not-al '

Lowed to write to file

= ope.O WRONLY) ;
wrlte(fd pdftfer, length(userbuffer));

/& p———

Goal: Write to file only with permission
What can go wrong?

CSE 484 / CSE M 584 - Spring 2025

TOCTOU (Race Condition)

TOCTOU = “Time of Check to Tile of Use” /

T~

if (check user perms(“file”, WRITE OK) != 0) {
exit(1l); // user not allowed to write to file

open(“file”, O WRONLY);
write(fd, userbuffer, length(usenbuffer));

——
Goal: Write to file only with permission

Attacker (in another program) can change meaning of “file”
between access and open:

symlink("/etc/passwd", "file");

CSE 484 / CSE M 584 - Spring 2025

Something Different: Password Checker

- Functional requirements [4

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd C—
* Return FALSE otherwise &

RealPwd and CandidatePwd are both 8 characters long

CSE 484 / CSE M 584 - Spring 2025

Password Checker

* Functional requirements

e PwdCheck(RealPwd, CandidatePwd) should:
®* Return TRUE if RealPwd matches CandidatePwd ~
®* Return FALSE otherwise \ = O
* RealPwd and CandidatePwd are both 8 characters long
| 27
* Implementation

PwdCheck(RealPwd, CandidatePwd) // both 8 chars always

c/71‘:or'(int 1=0; i<8; i++){ (~— X
if (RealPwd[i] !'= CandidatePwd[i])
return FALSE,; /Y

} ¢?§
return TRUE;

CSE 484 / CSE M 584 - Spring 2025

Attacker Model

PwdCheck(RealPwd, CandidatePwd) // both 8 chars always
for(int 1=0; 1<8; i++){
—7 1f (RealPwd[i] != CandidatePwd[i])

} return FALSE; AAAAA AA

cﬁMf\ return TRUE: %A ﬁ A o
CAM C R AA

Attacker can guess CandidatePwds through some standard

interface /

Naive: Try all 2568 = 18,446,744,073,709,551,616 gﬁsibilities
s it possible to derive password more quickly?

CSE 484 / CSE M 584 - Spring 2025

Try it

dkohlbre.com/cew
///\

CSE 484 / CSE M 584 - Spring 2025

Hardening binaries

Buffer Overflow: Causes and Cures

- Classical memory exploit involves code injection

. gut malicious code at a predictable location in memory, usually masquerading as
ata

« Trick vulnerable program into passing coy{rol to it

)

- Possible defenses:

Prevent execution of untrusted code
Detect overflows

Validate pointers

Address space layout randomization
Code analysis

Better interfaces

N U hEWNRE

CSE 484 / CSE M 584 - Spring 2025

ASLR: Address Space Randomization

Randomly arrange address space of key data areas for a process
Base of executable region

Position of stack /7/7 e S P
Position of heap &54«0&

@(7[)

« Position of libraries
Introduced by Linux PaX project in 2001@
Adopted by OpenBSD in 2003 e
Adopted by Linux in 2005
X g e
2\

CSE 484 / CSE M 584 - Spring 2025

ASLR: Address Space Randomization

Deployment (examples)
Linux kernel since 2.6.12 (2005+)
Android 4.0+
iOS 4.3+ ; OS X 10.5+
Microsoft since Windows Vista (2007)

Attacker goal: Guess or figure out target address (or addresses)
(Think about how poor printf usage might help an attacker!)

T

Attacking ASLR

NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

Brute force attacks or memory disclosures to map out memory on
the fly

Disclosing a single address can reveal the location of all code within a
library, depending on the ASLR implementation

Remember our printf vulnerabilities!

CSE 484 / CSE M 584 - Spring 2025

Defense: Executable Space Protection

She |)0046’ on SLack

Mark all writeable memory locations as non-executable
This blocks many code injection exploits

Hardware support

AMD “NX” bit (no-execute), Intel “XD” bit (execute disable) (in post-2004
CPUs) /Q

Makes memory page non-executable

Widely deployed
Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+
(10.4 for stack but not heap), Android 2.3+
RUUX

CSE 484 / CSE M 584 - Spring 2025

Not Prevent?

What Does “Executable Space P&ﬁtion”

. Can still corrupt stack ...
... or function pointers -
... or critical data on the heap

- As long as RET points into existing code, executable space

protection will not block control transfer! /T
- return-to-libc exploits (odl 7
/ T —

o

oal”

CSE 484 / CSE M 584 - Spring 2025

return-to-libc 6*@’7/
P re-

. Overwrite saved return address with address of any library routine

- Does not look like a huge threat?

to-li Cr€C
return-to-libc -t

Overwrite saved return address with address of any library routine
Arrange stack to look like arguments

e T e

Does not look like a huge threat >;L(3
. ... /—

We can call any function we want! /%—
Say, exec © ' (\
‘OCcz 5

CSE 484 / CSE M 584 - Spring 2025

return-to-libc++

. Insight: Overwritten saved EIP need not point to the beginning of a
library routine

. Any existing instruction in the code image is fine
- Will execute the sequence starting from this instruction

- What if instruction sequence contains RET?
 Execution will be transferred... to where?
//7 Read the word pointed to by stack pointer (SP)

 Guess what? Its value is under attacker’s control!

« Use it as the new value for IP
* Now control is transferred to an address of attacker’s choice!

- Increment SP to point to the next word on the stack

CSE 484 / CSE M 584 - Spring 2025

Chaining RETs

Can chain together sequences ending in RET

Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything
Turing-complete language <
Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

Attack can perform arbitrary computation using no injected code at all —
return-oriented programming

Truly, a “weird machine”

CSE 484 / CSE M 584 - Spring 2025

Defense: Run-Time Checking

Gradescope: Why would this be useful? How
could a program use this to protect against
buffer overflows?

N
=

sfp ar(%Ir

buf

\ J \ J

Y Y
Pointer to Return
previous execution to
frame this address

—~
Local variables

Choose randomly at the start of the
program execution, keep constant
during this program run.

CSE 484 / CSE M 584 - Spring 2025

Top of
stack

Defense: Run-Time Checking: StackGuard

 Embed “canaries” (stack cookies) in stack frames and
verify their integrity prior to function return
— Any overflow of local variables will damage the canary

N

sfp argélr

| - - \ J \

P Yt t RYet rn
I ointer to u
Local variables previous €xecution to

frame this address

buf

CSE 484 / CSE M 584 - Spring 2025

Defense: Run-Time Checking: StackGuard

 Embed “canaries” (stack cookies) in stack frames and
verify their integrity prior to function return
— Any overflow of local variables will damage the canary

— : A
: Top of
buf sfp aé’ér - stack
| - 7 \ J \ J
v Poimerto RYeturn
Local variables previous €xecution to

frame this address

« Choose random canary string on program start
— Attacker can’t guess what the value of canary will be

« Canary contains: “\0”, newline, linefeed, EOF
— String functions like strcpy won’t copy beyond “\0”

CSE 484 / CSE M 584 - Spring 2025

StackGuard Implementation

StackGuard requires code recompilation

Checking canary integrity prior to every function return causes a
performance penalty

For example, 8% for Apache Web server at one point in time

Defeating StackGuard

« StackGuard can be defeated
— A single memory write where the attacker controls both the value and the

destination is sufficient

» Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
— Example: dst is a local pointer variable
— Attacker controls both buf and dst

buf

&dst

H_I

Return execution to
this address

BadPointer, attack code

&RET

_

Overwrite destination of strcpy with RET posit}én

/ strcpy will copy
BadPointer here

CSE 484 / CSE M 584 - Spring 2025

Pointer integrity protections (e.g.
PointGuard, PAC, etc.)

Attack: overwrite a pointer (heap date, ret, function pointer, etc.)

ldea: encrypt all pointers while in memory
Generate a random key when program is executed
Each pointer is encrypted/XOR’d/MAC’d with this key when in memory
Pointers cannot be overflowed while in registers
Attacker cannot predict the target program’s key

If XOR/encrypt: adversary cannot predict what a corrupted pointer will do
(mostly)

If integrity (MAC) then the program can detect a modified pointer.

CSE 484 / CSE M 584 - Spring 2025

[Cowan]

Normal Pointer Dereference

CPU

1. Fetch pointer \Vv \Access data referenced by pointer

/7 " Y
Pointer
M emory 0x1234 Data

0x1234

2. Access attack code referenced

by corrupted pointer
1. Fetch pointer value
Corrupted pointer
Attack
Memor N Data
y 0x1340 code

0x1234 0x1340

Modern PAC Dereference

Memory

Memory

CPU

/)‘X001234' MAG " 2. Access data referenced by pointer

1. Fetch pointer
value Check MAG
e
7/ A
MAC+ pinter
0XXX12B4 Data
0x1234

= CPU

1. Fetch pointer

Throw an error! (Terminate program)

A:(OO’I 340, MAC’

value Decrypt
Corrupted pointer
Data Attack
code
0x1234 0x1340 0x9786

CSE 484 / CSE M 584 - Spring 2025

CFl: Control flow integrity

ldea: enforce branches to terminate ‘where expected’
... which is where?

Well, at the start of functions!
We shouldn’t ever ‘call’ into the middle of something!
Put a special instruction at the start of every function: endbr64

What about jumps (je, jz..)?

... What about ret?

CSE 484 / CSE M 584 - Spring 2025

Defense: Shadow stacks

- ldea: protect the backwards edge (return addresses on the stack)!

« Store them on... a different stack!
A hidden stack

On function call/return
Store/retrieve the return address from shadow stack

« Or store on both main stack and shadow stack, and compare for equality at function
return

2020/2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO 5000)

Challenges With Shadow Stacks

Where do we put the shadow stack?
Can the attacker figure out where it is? Can they access it?

How fast is it to store/retrieve from the shadow stack?
How big is the shadow stack?
Is this compatible with all software?

(Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

Defense: Better string functions!

. strcpy is bad
. strncpy is... also bad (no null terminator! Returns dest!)

Defense: Better string functions!

. strcpy is bad
. strncpy is... also bad (no null terminator! Returns dest!)

. BSD to the rescue: stricpy

. size_t strlcpy(char *dest, const char *src, size_t n);
« Always NUL terminates

- Ratiirne lanlcrr)
Ushering out stricpy()
By Jonathan Corbet With all of the complex problems that must be solved in the kernel, one might think that copying a string would draw little
August 25, 2022 attention. Even with the hazards that C strings present, simply moving some bytes should not be all that hard. But string-copy

functions have been a frequent subject of debate over the years, with different variants being in fashion at times. Now it seems
that the BSD-derived stricpy(). function may finally be on its way out of the kernel.

What does a modern

Normal, reasonable gcc config, (no optimization)

0000122d <foo>:

122d:
1231:
1232:
1234:
1235:
123b:
1240:
1245:
1248:
124e:
1255:
1258:
125a:
1260:
1263:
1265:
1268:
1269:
126f:
1270:
1272:
1277:
127a:
127b:
127e:
1285:
1287:
128c:
128f:
1290:

f3 of le fb

55
89
53
81
e8
05
8b
89
65
89
31
8b
83
8b
83
52
8d
52
89
e8
83
90
8b
65
74
e8
8b
c9
c3

e5

ec
b9o
88
55
95
8b
4d
c9
95
c2
12
ec

95

c3
49
c4

4d
33
05
f4
5d

34
00
2d
08
d4
ed
f4

da
04

08

dc

fe

10

f4
ed

00
fc

01
00
00

fe
14

fe

fe

£f

14

00

00
00
00

£f
00

£f

£f

£f

00

00

00

£f
00 00

£f

£f

00 00

endbr32

push
mov
push
sub
call
add
mov
mov
mov
mov
xor
mov
add
mov
sub
push
lea
push
mov
call
add
nop
mov
xor
je
call
mov
leave
ret

%ebp

%esp,%ebp

%ebx

$0x134,%esp

1219 < x86.get _pc_thunk.ax>
$0x2d88, %eax
ox8(%ebp) ,%edx
%edx, -0x12c (%ebp)
%gs :0x14,%ecx
%»ecx, -oxc (%ebp)
%»ecx,%ecx
-0x12c(%ebp),%edx
$0x4 , %edx

(%edx) ,%edx
$0x8,%esp

%edx

-0x124(%ebp) ,%edx
%edx

%»eax, %ebx

10c0 <strcpy@plt>
$0x10, %esp

-oxc(%ebp),%ecx

%gs :0x14,%ecx

128c <foo+0x5f>

1380 < stack chk fail local>
-0x4(%ebp) ,%ebx

CSE 484 / CSE M 584 - Spring 2025

080491ad <foo>:
80491ad:
80491ae:
80491b0:
80491b6:
80491b9:
80491bc:
80491be:
80491b+:
80491c5:
80491c6:
80491chb:
80491ce:
80491cf:
80491d0o:

55
89
81
8b
83
8b
50
8d
50
e8
83
90
c9
c3

e5
ec
45
co
00

85

95
c4

program do?

Our custom gcc config

18 01 00 00
08
04

e8 fe ff ff

fe £f ff
08

push
mov
sub
mov
add
mov
push
lea
push
call
add
nop
leave
ret

%ebp

%esp, %ebp

$0x118, %esp
ox8(%ebp) ,%eax
$0x4, %eax

(%eax) ,%eax

%eax

-0x118(%ebp) ,%eax
%eax

8049060 <strcpy@plt>
$0x8,%esp

Walit...

Attu/umnak’s gcc config

080491ad <foo>:
80491ad:
80491ae:
80491b0o:
80491b6:
80491b9:
80491bc:
80491be:
80491cl:
80491c2:
80491c8:
80491c9:
80491ce:
80491d1:
80491d2:
80491d3:

55
89
81
8b
83
8b
83
50
8d
50
e8
83
90
c9
c3

e5
ec
45
co
00
ec

85

92
c4

push
mov
28 01 00 00 sub
08 \Y
04 add
mov
08 sub
ed fe ff ff lea
push
fe ff ff call
10 add
nop
leave
ret

%ebp

%esp, %ebp

$0x128, %esp
ox8(%ebp) , %eax
$0x4, %eax
(%eax),%eax

$0x8, %esp

%eax
-0x120(%ebp) , %eax
%eax

8049060 <strcpy@plt>
$0x10,%esp

080491ad <foo>:
80491ad:
80491ae:
80491b0:
80491b6:
80491b9:
80491bc:

80491be:
80491b7:
80491c5:
80491c6:
80491cb:
80491ce:
80491cT:
80491d0o:

CSE 484 / CSE M 584 - Spring 2025

55
89
81
8b
83
8b

50
8d
50
e8
83
90
c9
c3

Our custom gcc config

e5
ec
45
co
00

18 01 00 00
08
04

e8 fe ff ff

85

fe ff ff
08

95
c4

push
mov
sub
mov
add
mov

push
lea
push
call
add
nop
leave
ret

%ebp

%esp, %ebp
$0x118, %esp
ox8(%ebp) , %eax
$0x4, %eax
(%eax),%eax

%eax
-0x118(%ebp) , %eax
%eax

8049060 <strcpy@plt>
$0x8, %esp

Other Big Classes of Defenses

Use safe programming languages, e.g.,
What about legacy C code?

of source code to find overflows
Dynamic testing: “fuzzing”

CSE 484 / CSE M 584 - Spring 2025

Fuzz Testing

Generate “random” inputs to program
Sometimes conforming to input structures (file formats, etc.)

See if program crashes

If crashes, found a bug
Bug may be exploitable

Surprisingly effective

Now standard part of development lifecycle

CSE 484 / CSE M 584 - Spring 2025

