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Admin

* Lab 4 : A+B Due Today

* Separate assignments, so separate late day usage.
* If this is not what you expected and it throws off your late day usage, email.

e Lab 4 : CDuein a week

* These patches are slightly trickier
® An ideal patch for each is (usually) more than just a couple lines of code.
® With proper documentation sometimes a very short patch gets a great score.

* You *must™ pass the autograder if you want to get a reasonable grade.
® Itis very rare that a patch that doesn’t get a perfect autograder score does well.

 Next week’s in-class:
* Due on Friday, not 1-week.



Final Exam

* June 9t 8:30am here in G20.
* There may be assigned seating, we’re working that out.

* Next Thursday section will do exam prep/discussion
e Don’t wait until then to review materials.

* We will release some amount of sample exam questions in time for
section, or before.

* We're still writing the final, so can’t release them vyet.



Final Exam study notes

* Binary Security:
* Go over any code examples we did in class, understand the fundamental
problem with each.
* Review your Lab 1 writeups (understand why those bugs work.)
Practice drawing out and reasoning about simple function stack diagrams.
Review the optional Lab 1 exercises (buffer exercise) if you didn’t before.
Review the discussion of defenses and hardening mechanismes.

In-class discussion questions are great starting point for many of these.



Final Exam study notes

* Cryptography:

* Understand the fundamental security properties we discussed, and how each
type of cryptographic tool relied on them.
Review hashing and hashing properties.
Review RSA and Diffie-Hellman operation.
Be able to do a simple RSA or DH operation in Z_p* (very small numbers)
Review block cipher properties and why/how we build block cipher modes.

In-class discussion questions are great starting point for many of these.
Lab 2 short answer questions as well.



Final Exam study notes

* Web Security:
* Review the same-origin model.
* Understand what cookies are used for, how they are set, etc.

* Work through the XSS and CSRF flows we’ve done, and be able to identify the
actors and actions for each.

* Review your Lab 3 writeups. Be able to articulate how to launch an XSS or
CSRF attack and what the ‘naive.com’ site needs to have for that to work.

In-class discussion questions are great starting point for many of these.



Final Exam study notes

* Tracking, Anonymity and Usability:
* Review what anonymity means, and when you can have it.
* Review tracking approaches and defenses.

* Understand the basics of how Tor and mixnets provide privacy properties
(and when they don’t.)

* Be able to discuss the usability problems with security indicators, and why
different security mechanisms have different ways to communicate their
status.

* In-class discussion questions are great starting point for many of these.



Side channels



Side-channels: conceptually

* A program’s implementation (that is, the final compiled version) is
different from the conceptual description

* Side-effects of the difference between the implementation and
conception can reveal unexpected information

 Thus: Side-channels



Attacker Model

PwdCheck(RealPwd, CandidatePwd) // both 8 chars always
for(int 1=0; 1<8; i++){
if (RealPwd[i] != CandidatePwd[i])
return FALSE;

}
return TRUE;

e Attacker can guess CandidatePwds through some standard
interface

* Naive: Try all 2568 = 18,446,744,073,709,551,616 possibilities
* |s it possible to derive password more quickly?
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Detour: Covert-channels

* We’ll see many unusual ways to have information flow from thing A
to thing B

* If this is an intentional usage of side effects, it is a covert channel
e Unintentional means it is a side-channel

 The same mechanism can be used as a covert-channel, or abused as a
side-channel



Detour: Covert-channels

Sender: Receiver:

Msg = [0,1,1,1,0]
For bit in msg:
if bit == ©:
sleep(1l);
else:
use disk for 1s();
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Detour: Covert-channels -- Gradescope

Sender: Receiver:

Msg = [0,1,1,1,0]
For bit in msg:
if bit ==
sleep(1l);
else:
use disk for 1s();
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Detour: Covert-channels

Sender: Receiver:
Msg = [0,1,1,1,0] msg=[ ]
For bit in msg: for i in range(5):
if bit == O: msg[i] = is _disk busy();
sleep(1); sleep(1);
else:

use disk for 1s();
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Side Channel Attacks

* Most commonly discussed in the context of cryptosystems

* But also prevalent in many contexts

e E.g., we discussed the concept of a timing channel on password comparison
e E.g., we discussed browser fingerprinting
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Why should we care about side-channels?

 Compromises happen via ‘simple’ methods
* Phishing
 Straight-forward attacks

* Embedded systems do see side-channel attacks

* “High Security” systems do see side-channel attacks

SGX
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Timing side-channels: round 2

* Cryptographic implementations fall down T
e #1 target for timing attacks [ poemd [ actao | padans |

I Encrypt |
* Extremely common to find vulnerabilities

* “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and
Other Systems”

* Was very far from the last paper on the topic
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https://paulkocher.com/doc/TimingAttacks.pdf

Attacking cryptography with side-channels

* ANY leakage is bad
* E.g. 1 bit of key leaking is ‘catastrophic’

* Cryptographic implementations are complex
* Many layers of protocols



RSA is deprecated

* Partially because of how hard it is to avoid implementation issues!
* https://blog.trailofbits.com/2019/07/08/fuck-rsa/
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https://blog.trailofbits.com/2019/07/08/fuck-rsa/

Example Timing Attacks

* RSA: Leverage key-dependent timings of modular exponentiations

* https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-
other-systems/

* http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

* Block Ciphers: Leverage key-dependent cache hits/misses

CSE 484 / CSE M 584 - Spring 2025


https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-other-systems/
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

Cache side-channels



Cache side-channels

* ldea: The cache’s current state implies something about prior
memory accesses

* Insight: Prior memory accesses can tell you a lot about a program!



Many thanks to Craig Disselkoen for the animations.

Cache Basics

* Cache lines : fixed-size units of data

* Cache set : holds multiple cache lines

* Set index : assigns cache line to cache set

* Eviction : removing cache lines to make room
* L1, L2, L3 : different levels of cache

* Inclusité {th%s in L1/L2 must alS¥Befih L3

L1 L1 L1 L1
Inst Data Inst Data
L2 Cache L2 Cache

L3 Cache



Many thanks to Craig Disselkoen for the animations.

Cache Attacks: Structure

Pre-Attack Active Attack Analysis
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Many thanks to Craig Disselkoen for the animations.

Pre-Attack Active Attack Analysis
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FLUSH + RELOAD

* Even simpler!
e Kick line L out of cache
e Let victim run

* Access L
e Fast? Victim touched it
e Slow? Victim didn’t touch it



Cache attacks wrapup

e Cache attacks are a core element of many side-channels
e Generally “assumed to work” these days

* New variations/tricks/mitigations published constantly



What is a cache attack good for?



A research topic:
microarchitectural side-channels

 What if
* mul rax, rcx

* Takes variable CPU cycles depending on the value of rcx
* 2 cycles for not-zero
* 1 cycle for zero



