CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner
dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials

Admin

* Lab 4 : A+B Due Today

* Separate assignments, so separate late day usage.
* If this is not what you expected and it throws off your late day usage, email.

e Lab 4 : CDuein a week

* These patches are slightly trickier
® An ideal patch for each is (usually) more than just a couple lines of code.
® With proper documentation sometimes a very short patch gets a great score.

* You *must™ pass the autograder if you want to get a reasonable grade.
® Itis very rare that a patch that doesn’t get a perfect autograder score does well.

 Next week’s in-class:
* Due on Friday, not 1-week.

Final Exam

* June 9t 8:30am here in G20.
* There may be assigned seating, we’re working that out.

* Next Thursday section will do exam prep/discussion
e Don’t wait until then to review materials.

* We will release some amount of sample exam questions in time for
section, or before.

* We're still writing the final, so can’t release them vyet.

Final Exam study notes

* Binary Security:
* Go over any code examples we did in class, understand the fundamental
problem with each.
* Review your Lab 1 writeups (understand why those bugs work.)
Practice drawing out and reasoning about simple function stack diagrams.
Review the optional Lab 1 exercises (buffer exercise) if you didn’t before.
Review the discussion of defenses and hardening mechanismes.

In-class discussion questions are great starting point for many of these.

Final Exam study notes

* Cryptography:

* Understand the fundamental security properties we discussed, and how each
type of cryptographic tool relied on them.
Review hashing and hashing properties.
Review RSA and Diffie-Hellman operation.
Be able to do a simple RSA or DH operation in Z_p* (very small numbers)
Review block cipher properties and why/how we build block cipher modes.

In-class discussion questions are great starting point for many of these.
Lab 2 short answer questions as well.

Final Exam study notes

* Web Security:
* Review the same-origin model.
* Understand what cookies are used for, how they are set, etc.

* Work through the XSS and CSRF flows we’ve done, and be able to identify the
actors and actions for each.

* Review your Lab 3 writeups. Be able to articulate how to launch an XSS or
CSRF attack and what the ‘naive.com’ site needs to have for that to work.

In-class discussion questions are great starting point for many of these.

Final Exam study notes

* Tracking, Anonymity and Usability:
* Review what anonymity means, and when you can have it.
* Review tracking approaches and defenses.

* Understand the basics of how Tor and mixnets provide privacy properties
(and when they don’t.)

* Be able to discuss the usability problems with security indicators, and why
different security mechanisms have different ways to communicate their
status.

* In-class discussion questions are great starting point for many of these.

Side channels

Side-channels: conceptually

* A program’s implementation (that is, the final compiled version) is
different from the conceptual description

* Side-effects of the difference between the implementation and
conception can reveal unexpected information

 Thus: Side-channels

Attacker Model

PwdCheck(RealPwd, CandidatePwd) // both 8 chars always
for(int 1=0; 1<8; i++){
if (RealPwd[i] != CandidatePwd[i])
return FALSE;

}
return TRUE;

e Attacker can guess CandidatePwds through some standard
interface

* Naive: Try all 2568 = 18,446,744,073,709,551,616 possibilities
* |s it possible to derive password more quickly?

CSE 484 / CSE M 584 - Spring 2025

Detour: Covert-channels

* We’ll see many unusual ways to have information flow from thing A
to thing B

* If this is an intentional usage of side effects, it is a covert channel
e Unintentional means it is a side-channel

 The same mechanism can be used as a covert-channel, or abused as a
side-channel

Detour: Covert-channels

Sender: Receiver:

Msg = [0,1,1,1,0]
For bit in msg:
if bit == ©:
sleep(1l);
else:
use disk for 1s();

CSE 484 / CSE M 584 - Spring 2025

Detour: Covert-channels -- Gradescope

Sender: Receiver:

Msg = [0,1,1,1,0]
For bit in msg:
if bit ==
sleep(1l);
else:
use disk for 1s();

CSE 484 / CSE M 584 - Spring 2025

Detour: Covert-channels

Sender: Receiver:
Msg = [0,1,1,1,0] msg=[]
For bit in msg: for i in range(5):
if bit == O: msg[i] = is _disk busy();
sleep(1); sleep(1);
else:

use disk for 1s();

CSE 484 / CSE M 584 - Spring 2025

Side Channel Attacks

* Most commonly discussed in the context of cryptosystems

* But also prevalent in many contexts

e E.g., we discussed the concept of a timing channel on password comparison
e E.g., we discussed browser fingerprinting

CSE 484 / CSE M 584 - Spring 2025

Why should we care about side-channels?

 Compromises happen via ‘simple’ methods
* Phishing
 Straight-forward attacks

* Embedded systems do see side-channel attacks

* “High Security” systems do see side-channel attacks

SGX

CSE 484 / CSE M 584 - Spring 2025

Timing side-channels: round 2

* Cryptographic implementations fall down T
e #1 target for timing attacks [poemd [actao | padans |

I Encrypt |
* Extremely common to find vulnerabilities

* “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and
Other Systems”

* Was very far from the last paper on the topic

CSE 484 / CSE M 584 - Spring 2025

https://paulkocher.com/doc/TimingAttacks.pdf

Attacking cryptography with side-channels

* ANY leakage is bad
* E.g. 1 bit of key leaking is ‘catastrophic’

* Cryptographic implementations are complex
* Many layers of protocols

RSA is deprecated

* Partially because of how hard it is to avoid implementation issues!
* https://blog.trailofbits.com/2019/07/08/fuck-rsa/

CSE 484 / CSE M 584 - Spring 2025

https://blog.trailofbits.com/2019/07/08/fuck-rsa/

Example Timing Attacks

* RSA: Leverage key-dependent timings of modular exponentiations

* https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-
other-systems/

* http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

* Block Ciphers: Leverage key-dependent cache hits/misses

CSE 484 / CSE M 584 - Spring 2025

https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-other-systems/
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

Cache side-channels

Cache side-channels

* ldea: The cache’s current state implies something about prior
memory accesses

* Insight: Prior memory accesses can tell you a lot about a program!

Many thanks to Craig Disselkoen for the animations.

Cache Basics

* Cache lines : fixed-size units of data

* Cache set : holds multiple cache lines

* Set index : assigns cache line to cache set

* Eviction : removing cache lines to make room
* L1, L2, L3 : different levels of cache

* Inclusité {th%s in L1/L2 must alS¥Befih L3

L1 L1 L1 L1
Inst Data Inst Data
L2 Cache L2 Cache

L3 Cache

Many thanks to Craig Disselkoen for the animations.

Cache Attacks: Structure

Pre-Attack Active Attack Analysis

CSE 484 / CSE M 584 - Spring 2025

Many thanks to Craig Disselkoen for the animations.

Pre-Attack Active Attack Analysis
Prime ! [Tlmed]
Timing threshold git= = = ———— - Victim access if
targeted Prlme targeted . hreshold
Eviction set set set time > thresno

I
I
*Vlctim accesses targeted set
I
I
I
|

Cache set 2

PRIME+PROB FLUSH+RELOAD
uires sﬁared memo

Cache set O Ie I

Pre-existing data - Attacker’s data /cse .Ing Victim’s data

FLUSH + RELOAD

* Even simpler!
e Kick line L out of cache
e Let victim run

* Access L
e Fast? Victim touched it
e Slow? Victim didn’t touch it

Cache attacks wrapup

e Cache attacks are a core element of many side-channels
e Generally “assumed to work” these days

* New variations/tricks/mitigations published constantly

What is a cache attack good for?

A research topic:
microarchitectural side-channels

 What if
* mul rax, rcx

* Takes variable CPU cycles depending on the value of rcx
* 2 cycles for not-zero
* 1 cycle for zero

