
CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials

Admin

• Lab 4 : you should have started looking at tinyserv.
• If you haven’t start today.
• I only see 34ish forks!

CSE 484 / CSE M 584 - Spring 2025

tinyserv – a tiny, bad, HTTP server

• ~1000 lines of C code

• Moderately well commented

• Quite buggy

• You can interact with it via command line tools or a web browser

CSE 484 / CSE M 584 - Spring 2025

tinyserv – a tiny, bad, HTTP server

• ~1000 lines of C code

• Moderately well commented

• Quite buggy

• You can interact with it via command line tools or a web browser

• 4 exploits
• Exploit 1: Given RCA, create patch (Part A)

• Exploit 2: TAs covered in section!

• Exploit 3 & 4: Given exploit, create RCA (Part B), create patch (Part C)

CSE 484 / CSE M 584 - Spring 2025

Lab 4 Components

• Part A
• We will give you the RCA for an exploit, and you have to write the patch

• Part B
• We will give you an exploit, and you have to write the RCA

• (You can choose one of two exploits. You may do the other for extra credit.)

• Part C
• You have to write the patch for Part B’s exploit

• Do not wait for feedback from Part B! We will try to get it to you before Part C
is due but cannot guarantee it.

CSE 484 / CSE M 584 - Spring 2025

Major Features

• “admin” login
• Sets a randomized password on server start
• Successful login sets a cookie that lets admins access admin content
• admin.txt contains a log of requests received so far
• /admin_only/index.html secret admin homepage
• (Our exploits work by demonstrating they can access admin.txt)

• Dynamic content fills
• Some pages have dynamic content (notably 404s) that gets filled at request

• Response caching
• Pages are cached in a hashtable on first send
• Future responses will check the hashtable first

CSE 484 / CSE M 584 - Spring 2025

RCA Strategies

• Read through the server code (see tinyserv.c to start)
• You don’t have to understand everything!

• Read through the exploit inputs and try to guess which parts of the tinyserv
code might be related; start debugging there!

• Use gdb for debugging and execution tracing
• gdb --args ./tinyserv ./files

• break [function name or line number]

• run

• From another terminal window, you can now run the exploits

• (Maybe:) Modify tinyserv.c to test things or add print statements
• You may want to add your own logging to the server.

CSE 484 / CSE M 584 - Spring 2025

Patching Reminders

• Try a variety of workflows to make sure you didn’t break anything

• At least anything new
• Eg tinyserv will exit if you try to request a directory. You shouldn’t be fixing that.

• Try basic things in an unpatched tinyserv, and your patched tinyserv:
• Visit a variety of the pages
• Log in and log out
• Restart the server
• Log the status of caching
• Etc.

CSE 484 / CSE M 584 - Spring 2025

Patching writeup reminders

• This is mandatory, but also a chance to explain your changes.

• There are common patching strategies that will change some
behavior of tinyserv.
• If you document and justify that change, (usually) no point deduction.

• If you don’t document that change, some point deduction.

CSE 484 / CSE M 584 - Spring 2025

Randomness and Entropy
We’ve been using it, but how should we be using it?

CSE 484 / CSE M 584 - Spring 2025

Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)

CSE 484 / CSE M 584 - Spring 2025

C’s rand() Function

• C has a built-in random function:
rand()

• Don’t use rand() for security-
critical applications!
• Given a few sample outputs, you

can predict subsequent ones

CSE 484 / CSE M 584 - Spring 2025

unsigned long int next = 1;

/* rand:return pseudo-random integer in 0-32767 */
int rand(void) {

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand:set seed for rand() */
void srand(unsigned int seed) {

next = seed;
}

CSE 484 / CSE M 584 - Spring 2025

CSE 484 / CSE M 584 - Spring 2025

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
https://web.archive.org/web/20120301022831/http://www.cigital.com/papers/download/deve

loper_gambling.php

https://web.archive.org/web/20120301022831/http:/www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all
system updates

CSE 484 / CSE M 584 - Spring 2025

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

A recent example: keypair

• keypair is a JS library for generating (asymmetric) keypairs

CSE 484 / CSE M 584 - Spring 2025

https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

The output from the Lehmer LCG is encoded incorrectly. The specific line with the flaw is:

b.putByte(String.fromCharCode(next & 0xFF))

The definition of putByte is
[…]putByte = function(b) { this.data += String.fromCharCode(b); };

Since we are masking with 0xFF, we can determine that 97% of the output from the LCG are converted to zeros. The
only outputs that result in meaningful values are outputs 48 through 57, inclusive.

The impact is that each byte in the RNG seed has a 97% chance of being 0 due to incorrect conversion. When it is not,
the bytes are 0 through 9.

How might we get “good” random numbers?

• Gradescope!

• Where can we get (as in, where in the world) random bits?

• Do random events actually exist?

CSE 484 / CSE M 584 - Spring 2025

Obtaining Numbers

• For security applications, want “cryptographically secure pseudorandom
numbers”

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically secure pseudorandom
numbers”.

• Numbers that cannot be predicted by a bounded adversary.

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically secure pseudorandom
numbers”.

• Numbers that cannot be predicted by a bounded adversary.

• Side-step the entire philosophical question!

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• Libraries include cryptographically secure pseudorandom number
generators (CSPRNG)

seed

PRNG

state1

random1

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• Libraries include cryptographically secure pseudorandom number
generators (CSPRNG)

seed

PRNG

state1

random1

PRNG

state2

random2

PRNG

state3

random3

…

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• Libraries include cryptographically secure pseudorandom number
generators (CSPRNG)

• We’ve seen something that works like this for a computationally-
bounded attacker!

seed

PRNG

state1

random1

PRNG

state2

random2

PRNG

state3

random3

…

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• Libraries include cryptographically secure pseudorandom number
generators (CSPRNG)

• We’ve seen something that works like this for a computationally-
bounded attacker!

CTR

AES

CTR+1

random1

AES

CTR+2

random2

AES

CTR+3

random3

…

Key

CSE 484 / CSE M 584 - Spring 2025

AES CTR DRBG

• AES Counter-mode Deterministic Random Bit Generator

• Gather N (say, 1000) random bits.
• Hash them into two (distinct) 128-bit hashes

• Key = Hash(bits[0:499])

• CTR = Hash(bits[500:999])

• Mix in (e.g. CTR = Hash(CTR_current || randombits) regularly.

CTR

AES

CTR+1

random1

AES

CTR+2

random2

AES

CTR+3

random3

…

Key

CSE 484 / CSE M 584 - Spring 2025

Obtaining Pseudorandom Numbers

• Linux:
• /dev/random – blocking (waits for enough entropy)

• /dev/urandom – nonblocking, possibly less entropy (??)

• getrandom() – by default, blocking

• Windows:
• Various things, RNGCryptoServiceProvider maybe

• Challenges with embedded systems, saved VMs

CSE 484 / CSE M 584 - Spring 2025

Obtaining Random Numbers

• AMD/Intel’s on-chip random number generator
• RDRAND

• Internally:
• Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Hopefully no hardware bugs!
• https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-

destroyed-my-weekend/
• Or only a few bugs?

CSE 484 / CSE M 584 - Spring 2025

https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/

Cloudflare LavaRand

https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/CSE 484 / CSE M 584 - Spring 2025

CSE 484 / CSE M 584 - Spring 2025

