
CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials

Admin

• Homework 2 due today

• Lab 4 next goes out tonight (or tomorrow morning)
• Critical to start immediately on. Really.
• Section with be very helpful for getting started. Attend.

CSE 484 / CSE M 584 - Spring 2025

Part 2: Anonymity in Communication

CSE 484 / CSE M 584 - Spring 2025

Mix Cascades and Mixnets

CSE 484 / CSE M 584 - Spring 2025

• Messages are sent through a sequence of mixes

• Can also form an arbitrary network of mixes (“mixnet”)

• Some of the mixes may be controlled by attacker,
but even a single good mix ensures anonymity

• Pad and buffer traffic to foil correlation attacks

Disadvantages of Basic Mixnets

• Public-key encryption and decryption at each mix are
computationally expensive

• Basic mixnets have high latency
• OK for email, not OK for anonymous Web browsing

• Challenge: low-latency anonymity network

CSE 484 / CSE M 584 - Spring 2025

Using a Proxy Server

Alice

web server

virtual private
network (VPN)

KVPN

Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

K5

K1
K2

K3

K4

Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

K5

K1
K2

K3

K4

Gradescope:
Q: If K4 is compromised, what does it learn about Alice’s communications?
Q: If K5 is compromised, what does it learn about Alice’s communications?
Q: If K2 is compromised, what does it learn about Alice’s communications?

Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

K5

K1
K2

K3

K4

Tor: Randomized Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

Tor: Randomized Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

Tor: Randomized Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

- Random paths prevent a single Tor exit node from being associated with a user’s browsing behavior

Tor: Randomized Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

- Random paths prevent a single Tor exit node from being associated with a user’s browsing behavior

~ 2 million daily active users
> 7500 Tor relay nodes

Network Observing Adversaries

Alice

ISP 1
ISP 2

ISP 3

CDN 4

ISP 5

CDN 6

CDN 7

web server

Network Observing Adversaries

Alice

ISP 1
ISP 2

ISP 3

CDN 4

ISP 5

CDN 6

CDN 7

web server

- Adversary that observes network can trivially trace user requests to server

Timing Attacks Against Tor

Alice

ISP 1
ISP 2

ISP 3

CDN 4

ISP 5

CDN 6

CDN 7

web server

- Adversary that observes network can trivially trace user requests to server
- Adversary that observes part of network can also perform timing attacks to infer requests

Onion Routing

CSE 484 / CSE M 584 - Spring 2025

R4

R1

R2
R3 Bob

Alice

{R2,k1}pk(R1),{ }k1

{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3

{B,k4}pk(R4),{ }k4

{M}pk(B)

• Routing info for each link encrypted with router’s public key

• Each router learns only the identity of the next router

Issues and Notes of Caution

• The simple act of using Tor could make one a target for additional
surveillance

• Hosting an exit node could result in illegal activity coming from your
machine

CSE 484 / CSE M 584 - Spring 2025

RCA Lab

CSE 484 / CSE M 584 - Spring 2025

Security Engineering

• At some point, the vendor finds out about the bug
– Publicly or privately revealed by finder

– Internally found by code auditing

– Found being used in-the-wild

Upon Receiving a Vulnerability Report

• Suppose you work on the security team at a company

• You receive a report of a vulnerability in the wild, including a working
proof-of-concept exploit

Root-Cause Analysis (RCA)

• Consider:
– What is different between a “normal” interaction and the exploit?

– What part(s) of the program are relevant to that interaction?
• Add logging/debugging here! (But consider that it might affect the exploit…)

– Develop theories about what is happening

– Test your theories!

The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

• Find the specific code components (if any exist) that are responsible
– Aka: the vulnerability

– Consider that an exploit might leverage missing features!

The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

• Find the specific code components (if any exist) that are responsible
– Aka: the vulnerability

– Consider that an exploit might leverage missing features!

• Find “nearby” bugs
– i.e., if you fix the most-responsible line of code, is it still vulnerable?

The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

• Find the specific code components (if any exist) that are responsible
– Aka: the vulnerability

– Consider that an exploit might leverage missing features!

• Find “nearby” bugs
– i.e., if you fix the most-responsible line of code, is it still vulnerable?

• Plan out a patch
– Minimize breaking explicit features of the program

– Minimize breaking implicit features of the program

Terminology

• “Zero Days” – 0 days (aka “o-days”)
– Refers to a bug that is made publicly known at the same time as the vendor is told

– The vendor has had ‘0 days’ of lead time to fix it

Terminology

• “Zero Days” – 0 days (aka “o-days”)
– Refers to a bug that is made publicly known at the same time as the vendor is told

– The vendor has had ‘0 days’ of lead time to fix it

• CVE Number
– Common Vulnerabilities and Exposures

– E.g. CVE-2022-4135

Terminology

• “Zero Days” – 0 days (aka “o-days”)
– Refers to a bug that is made publicly known at the same time as the vendor is told

– The vendor has had ‘0 days’ of lead time to fix it

• CVE Number
– Common Vulnerabilities and Exposures

– E.g. CVE-2022-4135

• CWE
– Common Weakness Enumeration

– Standardized list of bug types

Terminology

• “Zero Days” – 0 days (aka “o-days”)
– Refers to a bug that is made publicly known at the same time as the vendor is told

– The vendor has had ‘0 days’ of lead time to fix it

• CVE Number
– Common Vulnerabilities and Exposures

– E.g. CVE-2022-4135

• CWE
– Common Weakness Enumeration

– Standardized list of bug types

• CVSS
– Common Vulnerability Scoring System

– Very limited utility, scores barely correlated with impact

Project 0 (p0) Root Cause Analyses (RCAs)

• Google Project Zero (aka p0) is the premiere publicly-disclosing bug
hunting team

• They produce detailed writeups of many bugs, and work with Google’s
Threat Analysis Group (aka TAG) to produce RCAs of in-the-wild bugs.

• You should go read some p0 RCAs!
https://googleprojectzero.github.io/0days-in-the-wild/rca.html

https://googleprojectzero.github.io/0days-in-the-wild/rca.html

Sample RCA
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA

CSE 484 - Fall 2024

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Sample RCA
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

Lab 4 Learning Goals

• Combine lessons/skills from the quarter:
– Identifying and understanding (and fixing) vulnerabilities

– Debugging and execution tracing (e.g., with gdb)

– Software and web security concepts

– Clear technical communication

• You’ll gain experience in:
– Root-causing a security bug similar to ones seen in class

– Writing patches for security bugs similar to ones seen in class

– Making sense of a moderate codebase (~1500 or fewer loc)

• This lab is a more realistic depiction of what working in security industry on the
defender side in “real life” might be like

tinyserv – a tiny, bad, HTTP server

• ~1500 lines of C code

• Moderately well commented

• Quite buggy

• You can interact with it via command line tools or a web browser

tinyserv – a tiny, bad, HTTP server

• ~1500 lines of C code

• Moderately well commented

• Quite buggy

• You can interact with it via command line tools or a web browser

• 4 exploits
– Exploit 1: Given RCA, create patch (Part A)

– Exploit 2: TAs will cover in Section!

– Exploit 3 & 4: Given exploit, create RCA (Part B), create patch (Part C)

Lab 4 Components

• Part A
– We will give you the RCA for an exploit, and you have to write the patch

• Part B
– We will give you an exploit, and you have to write the RCA
– (You can choose one of two exploits. You may do the other for extra credit.)

• Part C
– You have to write the patch for Part B’s exploit

Major Features

• “admin” login
– Sets a randomized password on server start

– Successful login sets a cookie that lets admins access admin.txt

– admin.txt contains a log of requests received so far

– (Our exploits work by demonstrating they can access admin.txt)

• Dynamic content fills
– Some pages have dynamic content (notably 404s) that gets filled at request

• Response caching
– Pages are cached in a hashtable on first send

– Future responses will check the hashtable first

RCA Strategies

– Read through the server code (see tinyserv.c to start)
• You don’t have to understand everything!

– Read through the exploit inputs and try to guess which parts of the tinyserv code
might be related; start debugging there!

– Use gdb for debugging and execution tracing
• gdb --args ./tinyserv ./files

• break [function name or line number]
• run
• From another terminal window, you can now run the exploits

– (Maybe:) Modify tinyserv.c to test things or add print statements

