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Admin

• Homework 2 due today

• Lab 4 next goes out tonight (or tomorrow morning)
• Critical to start immediately on. Really.
• Section with be very helpful for getting started. Attend.
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Part 2: Anonymity in Communication
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Mix Cascades and Mixnets
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• Messages are sent through a sequence of mixes

• Can also form an arbitrary network of mixes (“mixnet”)

• Some of the mixes may be controlled by attacker, 
but even a single good mix ensures anonymity

• Pad and buffer traffic to foil correlation attacks



Disadvantages of Basic Mixnets

• Public-key encryption and decryption at each mix are 
computationally expensive

• Basic mixnets have high latency
• OK for email, not OK for anonymous Web browsing

• Challenge: low-latency anonymity network
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Using a Proxy Server
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Onion Routing

[Reed, Syverson, Goldschlag 1997]
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Gradescope:
Q: If K4 is compromised, what does it learn about Alice’s communications?
Q: If K5 is compromised, what does it learn about Alice’s communications?
Q: If K2 is compromised, what does it learn about Alice’s communications?
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Tor: Randomized Onion Routing

[Reed, Syverson, Goldschlag 1997]

Alice

web server

- Random paths prevent a single Tor exit node from being associated with a user’s browsing behavior

~ 2 million daily active users
> 7500 Tor relay nodes
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Timing Attacks Against Tor

Alice

ISP 1
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ISP 3

CDN 4
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web server

- Adversary that observes network can trivially trace user requests to server
- Adversary that observes part of network can also perform timing attacks to infer requests



Onion Routing
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R4

R1

R2
R3 Bob

Alice

{R2,k1}pk(R1),{                                                                                               }k1

{R3,k2}pk(R2),{                                                                    }k2

{R4,k3}pk(R3),{                                         }k3

{B,k4}pk(R4),{               }k4

{M}pk(B)

• Routing info for each link encrypted with router’s public key

• Each router learns only the identity of the next router



Issues and Notes of Caution

• The simple act of using Tor could make one a target for additional 
surveillance

• Hosting an exit node could result in illegal activity coming from your 
machine
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RCA Lab
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Security Engineering

• At some point, the vendor finds out about the bug
– Publicly or privately revealed by finder

– Internally found by code auditing

– Found being used in-the-wild



Upon Receiving a Vulnerability Report

• Suppose you work on the security team at a company

• You receive a report of a vulnerability in the wild, including a working 
proof-of-concept exploit



Root-Cause Analysis (RCA)

• Consider:
– What is different between a “normal” interaction and the exploit?

– What part(s) of the program are relevant to that interaction?
• Add logging/debugging here! (But consider that it might affect the exploit…)

– Develop theories about what is happening

– Test your theories!
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The Goals for RCAs

• Identify what the exploit accomplishes

• Identify the major steps the exploit takes

• Find the specific code components (if any exist) that are responsible
– Aka: the vulnerability

– Consider that an exploit might leverage missing features!

• Find “nearby” bugs
– i.e., if you fix the most-responsible line of code, is it still vulnerable?

• Plan out a patch
– Minimize breaking explicit features of the program

– Minimize breaking implicit features of the program
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Terminology

• “Zero Days” – 0 days (aka “o-days”)
– Refers to a bug that is made publicly known at the same time as the vendor is told

– The vendor has had ‘0 days’ of lead time to fix it

• CVE Number
– Common Vulnerabilities and Exposures

– E.g. CVE-2022-4135

• CWE
– Common Weakness Enumeration

– Standardized list of bug types

• CVSS
– Common Vulnerability Scoring System

– Very limited utility, scores barely correlated with impact



Project 0 (p0) Root Cause Analyses (RCAs)

• Google Project Zero (aka p0) is the premiere publicly-disclosing bug 
hunting team

• They produce detailed writeups of many bugs, and work with Google’s 
Threat Analysis Group (aka TAG) to produce RCAs of in-the-wild bugs.

• You should go read some p0 RCAs! 
https://googleprojectzero.github.io/0days-in-the-wild/rca.html

https://googleprojectzero.github.io/0days-in-the-wild/rca.html


Sample RCA
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26411.html


Sample RCA
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Lab 4 Learning Goals

• Combine lessons/skills from the quarter:
– Identifying and understanding (and fixing) vulnerabilities

– Debugging and execution tracing (e.g., with gdb)

– Software and web security concepts

– Clear technical communication

• You’ll gain experience in:
– Root-causing a security bug similar to ones seen in class

– Writing patches for security bugs similar to ones seen in class

– Making sense of a moderate codebase (~1500 or fewer loc) 

• This lab is a more realistic depiction of what working in security industry on the 
defender side in “real life” might be like
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• Moderately well commented
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tinyserv – a tiny, bad, HTTP server

• ~1500 lines of C code

• Moderately well commented

• Quite buggy

• You can interact with it via command line tools or a web browser

• 4 exploits
– Exploit 1: Given RCA, create patch (Part A)

– Exploit 2: TAs will cover in Section!

– Exploit 3 & 4: Given exploit, create RCA (Part B), create patch (Part C)



Lab 4 Components

• Part A
– We will give you the RCA for an exploit, and you have to write the patch

• Part B
– We will give you an exploit, and you have to write the RCA
– (You can choose one of two exploits. You may do the other for extra credit.)

• Part C
– You have to write the patch for Part B’s exploit



Major Features

• “admin” login
– Sets a randomized password on server start

– Successful login sets a cookie that lets admins access admin.txt

– admin.txt contains a log of requests received so far

– (Our exploits work by demonstrating they can access admin.txt)

• Dynamic content fills
– Some pages have dynamic content (notably 404s) that gets filled at request

• Response caching
– Pages are cached in a hashtable on first send

– Future responses will check the hashtable first



RCA Strategies

– Read through the server code (see tinyserv.c to start)
• You don’t have to understand everything!

– Read through the exploit inputs and try to guess which parts of the tinyserv code 
might be related; start debugging there!

– Use gdb for debugging and execution tracing
• gdb --args ./tinyserv ./files

• break [function name or line number]
• run
• From another terminal window, you can now run the exploits

– (Maybe:) Modify tinyserv.c to test things or add print statements


