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Admin

• Office hours are posted
• They will start FRIDAY (none today or Thursday)

• My office hours are Friday afternoons 230-330.

• We have a LOT of office hours. Use them!

• Lab 1 will be posted tomorrow/tonight.
• 1a will be due next Wednesday (Section should get you 90% of the way done)
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Threat Modeling
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Threat Modeling

• Assets: What are we trying to protect?

• Adversaries: Who might try to attack, and why?

• Vulnerabilities: How might the system be weak?

• Threats: What actions might an adversary take to exploit vulnerabilities?

• Risk: How important are assets? How likely is exploit?

• Possible Defenses: What mitigations do we have available?

• Not “traditional” threat modeling, but important (both in general, and to 
help better understand the system prior to threat modeling):
• Benefits: Who might the system benefit, and how?
• Harms: Who might the system harm, and how?

CSE 484 / CSE M 584 - Spring 2025



What’s Security, Anyway?

• Common general security goals: “CIA”
• Confidentiality

• Integrity

• Availability

• Or the extension: CPIAAU (Parkerian Hexad)

• Control

• Authenticity

• Utility
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Confidentiality (Privacy)
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network

• Confidentiality is concealment of information.

Eavesdropping,
packet sniffing,
illegal copying



Integrity
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network

• Integrity is prevention of unauthorized changes.

Intercept messages,
tamper, release again



Availability
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network

• Availability is ability to use information or resources.

Overwhelm or crash servers,
disrupt infrastructure



Authenticity

CSE 484 / CSE M 584 - Spring 2025

network

Unauthorized assumption of
another’s identity

• Authenticity is knowing who you’re talking to.



Threat Modeling

• There’s no such thing as perfect security
• But, attackers have limited resources

• Make them pay unacceptable costs / take on unacceptable risks to succeed!

• Defining security per context: identify assets, adversaries, 
motivations, threats, vulnerabilities, risk, possible defenses
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Threat Modeling Example: Electronic Voting

• Popular replacement to traditional 
paper ballots
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Before we get into the system itself

• Think about how in-person electronic voting must work
• Machines

• Votes

• Voters

• Etc.

• Lightning round threat modeling!
• Assets?

• Adversaries?

• Risks (What might happen if assets are compromised?)

• Defenses?
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Pre-Election

Ballot definition file

Poll worker

Pre-election: Poll workers load “ballot definition 
files” on voting machine.
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Active Voting
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Voter token

Voter token

Interactively vote

Ballot definition file

Active voting:  Voters obtain single-use tokens from poll workers.  Voters 

use tokens to activate machines and vote.

VoterPoll worker



Active Voting
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Encrypted votes

Voter token

Voter token

Interactively vote

Ballot definition file

Active voting:  Votes encrypted and stored.  

Voter token canceled. 

VoterPoll worker



Post-Election
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si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Post-election:  Stored votes transported to 

tabulation center. 

Encrypted votes

Recorded votes

VoterPoll worker



Threat modeling – In detail

• Gradescope

• Fill out the questions while discussing with your neighbors
• Everyone should submit their own

• Polish not required, get down some good ideas!
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Post-Election
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si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Post-election:  Stored votes transported to 

tabulation center. 

Encrypted votes

Recorded votes

VoterPoll worker
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The x86(_64)
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First technical component of the course

• Understanding classic binary vulnerabilities and exploitation 
techniques

• We’ll be doing everything on x86 (32 or 64bit)

• Code will be in C
• Lab 1: very little C

• FP: More C
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Reminders

• Manual memory management

• Strings are ‘just’ arrays of bytes, no length field
• Strings only end when there is a NUL(NULL) byte.

• Pointers/integers/etc are all just bytes
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C strings

void main(int argc, char* argv[]){

char string1[32];

memset(string1, 'a', 32);

string1[31] = 0x00; // or, '\0'

printf("String1: %s\n", string1);

memset(string1, 'a', 32);

printf("String1, again: %s\n", string1);

}
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Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory 
(stack or heap)

• Typical situation:
• A function takes some input that it writes into a pre-allocated buffer.

• The developer forgets to check that the size of the input isn’t larger than the 
size of the buffer.

• Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution
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Stack Buffers

CSE 484 / CSE M 584 - Spring 2025

• Suppose Web server contains this function
void func(char *str) {

char buf[126];

...

strcpy(buf,str);

...

}

• No bounds checking on strcpy()

• If str is longer than 126 bytes
– Program may crash

– Attacker may change program behavior

buf uh oh!



Example: Changing Flags
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• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;

char buf[126];

...

strcpy(buf,str);

...

}

• Authenticated variable non-zero when user has extra privileges

• Morris worm also overflowed a buffer to overwrite an authenticated 
flag in fingerd

buf authenticated11 ( :-) ! )



Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses; grows and shrinks 
as functions are called and return
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Text region Heap Stack

Addr 0x00...0 Addr 0xFF...F

Top Bottom



Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is 
pushed onto the stack.
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Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations.
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strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



Executing Attack Code

• Suppose buffer contains attacker-created string
• For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be 

executed, giving attacker a shell (“shellcode”)
• Root shell if the victim program is setuid root
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ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his 
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the 
location where the system expects to find return address

Caller’s framestr


