
CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and
materials

Admin

• Office hours are posted
• They will start FRIDAY (none today or Thursday)

• My office hours are Friday afternoons 230-330.

• We have a LOT of office hours. Use them!

• Lab 1 will be posted tomorrow/tonight.
• 1a will be due next Wednesday (Section should get you 90% of the way done)

CSE 484 / CSE M 584 - Spring 2025

CSE 484 / CSE M 584 - Spring 2025

Threat Modeling

CSE 484 / CSE M 584 - Spring 2025

Threat Modeling

• Assets: What are we trying to protect?

• Adversaries: Who might try to attack, and why?

• Vulnerabilities: How might the system be weak?

• Threats: What actions might an adversary take to exploit vulnerabilities?

• Risk: How important are assets? How likely is exploit?

• Possible Defenses: What mitigations do we have available?

• Not “traditional” threat modeling, but important (both in general, and to
help better understand the system prior to threat modeling):
• Benefits: Who might the system benefit, and how?
• Harms: Who might the system harm, and how?

CSE 484 / CSE M 584 - Spring 2025

What’s Security, Anyway?

• Common general security goals: “CIA”
• Confidentiality

• Integrity

• Availability

• Or the extension: CPIAAU (Parkerian Hexad)

• Control

• Authenticity

• Utility

CSE 484 / CSE M 584 - Spring 2025

Confidentiality (Privacy)

CSE 484 / CSE M 584 - Spring 2025

network

• Confidentiality is concealment of information.

Eavesdropping,
packet sniffing,
illegal copying

Integrity

CSE 484 / CSE M 584 - Spring 2025

network

• Integrity is prevention of unauthorized changes.

Intercept messages,
tamper, release again

Availability

CSE 484 / CSE M 584 - Spring 2025

network

• Availability is ability to use information or resources.

Overwhelm or crash servers,
disrupt infrastructure

Authenticity

CSE 484 / CSE M 584 - Spring 2025

network

Unauthorized assumption of
another’s identity

• Authenticity is knowing who you’re talking to.

Threat Modeling

• There’s no such thing as perfect security
• But, attackers have limited resources

• Make them pay unacceptable costs / take on unacceptable risks to succeed!

• Defining security per context: identify assets, adversaries,
motivations, threats, vulnerabilities, risk, possible defenses

CSE 484 / CSE M 584 - Spring 2025

Threat Modeling Example: Electronic Voting

• Popular replacement to traditional
paper ballots

CSE 484 / CSE M 584 - Spring 2025

Before we get into the system itself

• Think about how in-person electronic voting must work
• Machines

• Votes

• Voters

• Etc.

• Lightning round threat modeling!
• Assets?

• Adversaries?

• Risks (What might happen if assets are compromised?)

• Defenses?

CSE 484 / CSE M 584 - Spring 2025

CSE 484 / CSE M 584 - Spring 2025

Pre-Election

Ballot definition file

Poll worker

Pre-election: Poll workers load “ballot definition
files” on voting machine.

CSE 484 / CSE M 584 - Spring 2025

Active Voting

CSE 484 / CSE M 584 - Spring 2025

Voter token

Voter token

Interactively vote

Ballot definition file

Active voting: Voters obtain single-use tokens from poll workers. Voters

use tokens to activate machines and vote.

VoterPoll worker

Active Voting

CSE 484 / CSE M 584 - Spring 2025

Encrypted votes

Voter token

Voter token

Interactively vote

Ballot definition file

Active voting: Votes encrypted and stored.

Voter token canceled.

VoterPoll worker

Post-Election

CSE 484 / CSE M 584 - Spring 2025
si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Post-election: Stored votes transported to

tabulation center.

Encrypted votes

Recorded votes

VoterPoll worker

Threat modeling – In detail

• Gradescope

• Fill out the questions while discussing with your neighbors
• Everyone should submit their own

• Polish not required, get down some good ideas!

CSE 484 / CSE M 584 - Spring 2025

Post-Election

CSE 484 / CSE M 584 - Spring 2025
si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Post-election: Stored votes transported to

tabulation center.

Encrypted votes

Recorded votes

VoterPoll worker

CSE 484 / CSE M 584 - Spring 2025

The x86(_64)

CSE 484 / CSE M 584 - Spring 2025

First technical component of the course

• Understanding classic binary vulnerabilities and exploitation
techniques

• We’ll be doing everything on x86 (32 or 64bit)

• Code will be in C
• Lab 1: very little C

• FP: More C

CSE 484 / CSE M 584 - Spring 2025

Reminders

• Manual memory management

• Strings are ‘just’ arrays of bytes, no length field
• Strings only end when there is a NUL(NULL) byte.

• Pointers/integers/etc are all just bytes

CSE 484 / CSE M 584 - Spring 2025

C strings

void main(int argc, char* argv[]){

char string1[32];

memset(string1, 'a', 32);

string1[31] = 0x00; // or, '\0'

printf("String1: %s\n", string1);

memset(string1, 'a', 32);

printf("String1, again: %s\n", string1);

}

CSE 484 / CSE M 584 - Spring 2025

Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory
(stack or heap)

• Typical situation:
• A function takes some input that it writes into a pre-allocated buffer.

• The developer forgets to check that the size of the input isn’t larger than the
size of the buffer.

• Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution

CSE 484 / CSE M 584 - Spring 2025

Stack Buffers

CSE 484 / CSE M 584 - Spring 2025

• Suppose Web server contains this function
void func(char *str) {

char buf[126];

...

strcpy(buf,str);

...

}

• No bounds checking on strcpy()

• If str is longer than 126 bytes
– Program may crash

– Attacker may change program behavior

buf uh oh!

Example: Changing Flags

CSE 484 / CSE M 584 - Spring 2025

• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;

char buf[126];

...

strcpy(buf,str);

...

}

• Authenticated variable non-zero when user has extra privileges

• Morris worm also overflowed a buffer to overwrite an authenticated
flag in fingerd

buf authenticated11 (:-) !)

Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses; grows and shrinks
as functions are called and return

CSE 484 / CSE M 584 - Spring 2025

Text region Heap Stack

Addr 0x00...0 Addr 0xFF...F

Top Bottom

Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is
pushed onto the stack.

CSE 484 / CSE M 584 - Spring 2025

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite
adjacent stack locations.

CSE 484 / CSE M 584 - Spring 2025

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Executing Attack Code

• Suppose buffer contains attacker-created string
• For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be

executed, giving attacker a shell (“shellcode”)
• Root shell if the victim program is setuid root

CSE 484 / CSE M 584 - Spring 2025

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the
location where the system expects to find return address

Caller’s framestr

