
CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides
and materials

Admin

• Lab 2 (Cryptolab) next Wednesday

• Lab 1a/b Exploits
• Again, check partner status. Please.
• Partner status is per-submission. You have to do it each time.
• Grades out.

CSE 484 / CSE M 584 - Spring 2025

Person-in-the-Middle Attacks

• Diffie-Hellman protocol (by itself) does not provide integrity (against
active attackers)

Alice Bob

gz

gx
skA ← x
pkA ← gx

skB ← y
pkB ← gy

gz

gx

Public Key Encryption

Bob

pkB,skB

pkB

Alice

Public Key Encryption

Bob

Encrypt(pkB , m) → ct

ct

Alice

pkB,skB

pkB

Public Key Encryption

Bob

Encrypt(pkB , m) → ct

ct

Decrypt(skB , ct) → m

Alice

pkB,skB

pkB

Public Key Encryption from Diffie-Hellman

Bob

skB ← y
pkB ← gy

pkB,skBpkB

Alice

Public Key Encryption from Diffie-Hellman

Bob

skB ← y
pkB ← gy

Sample one-time key:
skA ← r
pkA ← gr

Compute DH shared secret:
K= H(gry)

Encrypt with authenticated symmetric encryption:
ctSE = SE.Enc(K, m)

Alice

pkB,skBpkB

Public Key Encryption from Diffie-Hellman

Bob

skB ← y
pkB ← gy

Sample one-time key:
skA ← r
pkA ← gr

Compute DH shared secret:
K= H(gry)

Encrypt with authenticated symmetric encryption:
ctSE = SE.Enc(K, m)

ct = (gr, ctSE)

Alice

pkB,skBpkB

Public Key Encryption from Diffie-Hellman

Alice
Bob

skB ← y
pkB ← gy

Sample one-time key:
skA ← r
pkA ← gr

Compute DH shared secret:
K= H(gry)

Encrypt with authenticated symmetric encryption:
ctSE = SE.Enc(K, m)

ct = (gr, ctSE)

K= H(gry)
m = SE.Dec(K, ctSE)

pkB,skBpkB

Digital Signatures

Alice
Bob

pkB,skB

pkB

• No one should be able to forge signatures from
Bob’s public key without Bob’s secret key

Digital Signatures

Alice
Bob

σ

Sign(skB , m) → σ

• No one should be able to forge signatures from
Bob’s public key without Bob’s secret key

pkB,skB

pkB

Digital Signatures

Alice
Bob

Verify(pkB , m, σ) → 0/1

σ

Sign(skB , m) → σ

• No one should be able to forge signatures from
Bob’s public key without Bob’s secret key

pkB,skB

pkB

Digital Signatures

Alice
Bob

Verify(pkB , m, σ) → 0/1

σ

Sign(skB , m) → σ

• No one should be able to forge signatures from
Bob’s public key without Bob’s secret key

pkB,skB

pkB

So Far: Achieving Confidentiality/Authenticity

Alice Bob

M C
Encrypt

K

Decrypt

K

M

K K

Adversary

Message = M

Ciphertext = C

Encryption schemes: A tool for protecting confidentiality.

Now: Achieving Integrity

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, tag

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

MAC from CBC Mode (CBC-MAC)

P[1]

K
Block

Cipher

P[2]

K
Block

Cipher

P[n]

K
Block

Cipher
…

IV

C[1] C[2] C[n]C[0]

MAC from CBC Mode (CBC-MAC)

P[1]

K
Block

Cipher

P[2]

K
Block

Cipher

P[n]

K
Block

Cipher
…

Tag

MAC from CBC Mode (CBC-MAC)

P[1]

K
Block

Cipher

P[2]

K
Block

Cipher

P[n]

K
Block

Cipher
…

Tag

• Not secure when system may MAC messages of different lengths
• Adapt by concatenating message length to front of plaintext

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• Cryptographic hash function needs a few properties…

message
“digest”

message

Hash Functions: Useful!

• Distributing software

• Checking integrity of files

• Hashtables

• Commitments

• Etc.

Property 1: One-Way

• Intuition: hash should be hard to invert
– “Preimage resistance”

– Let h(x’) = y ∈ {0,1}n for a random x’

– Given y, it should be hard to find any x such that h(x)=y

• How hard?
– Brute-force: try every possible x, see if h(x)=y

– SHA-2 (common hash function) has 256-bit output
• Expect to try 2255 inputs before finding one that hashes to y.

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

Birthday Paradox

Birthday Paradox

Birthday Paradox

• Why is the birthday paradox important for collision resistance?
– 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value requires trying on
average 2127 values.

• Expect “collision” after selecting approximately 264 random values.

• 64 bits of security against collision attacks, not 128 bits.

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only O(2n/2),
not O(2n)
– For SHA-2 with 256-bit output, this means O(2128) vs. O(2256)

Property 3: Indifferentiability

• Informal: Outputs of the hash function look “random” (in a certain ideal
model)

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing” (one-way)
– A ciphertext can be decrypted with a decryption key

• Hashing is deterministic
– Hash the same input twice => same hash value

– Encrypt the same input twice => different ciphertexts

MAC via Hashing

Tag = Hash(K || message)

Alice Bob

K
K

message

MAC: message authentication code
(sometimes called a “tag”)

message, tag

=
?

Message authentication schemes: A tool for protecting integrity.

Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3: standard released by NIST in August 2015

• MD5 – Don’t use for security!
– 128-bit output

– Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t use for security!
– 160-bit output

– US government (NIST) standard as of 1993-95

– Theoretically broken 2005; practical attack 2017!

Authenticated Encryption

• What if we want both confidentiality and integrity?

• Natural approach: combine encryption scheme and a MAC.

How to combine Encryption and MACs?

Encrypt-and-MAC

M

C

Encrypt MACK1 K2

T

C T

How to combine Encryption and MACs?

Encrypt-and-MAC

M

C

Encrypt MACK1 K2

T

C T

Encrypt-then-MAC

M

C

Encrypt

MAC

K1

K2

T

C T

How to combine Encryption and MACs?

Encrypt-and-MAC

M

C

Encrypt MACK1 K2

T

C T

Encrypt-then-MAC

M

C

Encrypt

MAC

K1

K2

T

C T

MAC-then-Encrypt

M MAC

Encrypt

K2

K1

T

C

M T

C

Gradescope!

How to combine Encryption and MACs?

Encrypt-and-MAC

M

C

Encrypt MACK1 K2

T

C T

Encrypt-then-MAC

M

C

Encrypt

MAC

K1

K2

T

C T

MAC-then-Encrypt

M MAC

Encrypt

K2

K1

T

C

M T

C

MAC not required to hide
message! Deterministic!

Requires decrypting
before checking tag!

What do Quantum Computers mean for
Cryptography?

What do Quantum Computers mean for
Cryptography?

1. Implications for existing cryptography
● Quantum algorithms exist to solve “hard” assumptions quickly

○ Shor’s algorithm can solve factoring and discrete logarithm
● “Post-quantum” cryptography

○ Build asymmetric cryptography for classical computers based on assumptions that we
think are “hard” even for quantum computers

○ “Lattice-based” cryptography

What do Quantum Computers mean for
Cryptography?

1. Implications for existing cryptography
● Quantum algorithms exist to solve “hard” assumptions quickly

○ Shor’s algorithm can solve factoring and discrete logarithm
● “Post-quantum” cryptography

○ Build asymmetric cryptography for classical computers based on assumptions that we
think are “hard” even for quantum computers

○ “Lattice-based” cryptography

2. Implications for future cryptography
● Quantum computing offers new hardness assumptions and new functionality

from which to build cryptography

