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Admin

• Lab 2 (Cryptolab) next Wednesday

• Lab 1a/b Exploits
• Again, check partner status. Please.
• Partner status is per-submission. You have to do it each time.
• Grades out.

CSE 484 / CSE M 584 - Spring 2025



Person-in-the-Middle Attacks

• Diffie-Hellman protocol (by itself) does not provide integrity (against 
active attackers)
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Public Key Encryption from Diffie-Hellman
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Public Key Encryption from Diffie-Hellman

Alice
Bob

skB ← y
pkB ← gy

Sample one-time key:
skA ← r
pkA ← gr

Compute DH shared secret:
K= H(gry)

Encrypt with authenticated symmetric encryption:
ctSE = SE.Enc(K, m)

ct = (gr, ctSE )

K= H(gry)
m = SE.Dec(K, ctSE )
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Digital Signatures
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• No one should be able to forge signatures from 
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So Far: Achieving Confidentiality/Authenticity
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Adversary

Message = M

Ciphertext = C

Encryption schemes:  A tool for protecting confidentiality.



Now: Achieving Integrity

Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob
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MAC: message authentication code
(sometimes called a “tag”)

message, tag

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



MAC from CBC Mode (CBC-MAC)
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MAC from CBC Mode (CBC-MAC)
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• Not secure when system may MAC messages of different lengths
• Adapt by concatenating message length to front of plaintext



Hash Functions: Main Idea

bit strings of any length n-bit bit strings
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hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• Cryptographic hash function needs a few properties…
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Hash Functions: Useful!

• Distributing software

• Checking integrity of files

• Hashtables

• Commitments

• Etc.



Property 1: One-Way

• Intuition: hash should be hard to invert
– “Preimage resistance”

– Let h(x’) = y ∈ {0,1}n for a random x’ 

– Given y, it should be hard to find any x such that h(x)=y

• How hard?
– Brute-force: try every possible x, see if h(x)=y

– SHA-2 (common hash function) has 256-bit output
• Expect to try 2255 inputs before finding one that hashes to y.



Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)



Birthday Paradox
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Birthday Paradox

• Why is the birthday paradox important for collision resistance?
– 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value requires trying on 
average 2127 values.

• Expect “collision” after selecting approximately 264 random values.

• 64 bits of security against collision attacks, not 128 bits.

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only O(2n/2), 
not O(2n)
– For SHA-2 with 256-bit output, this means O(2128) vs. O(2256)



Property 3: Indifferentiability

• Informal: Outputs of the hash function look “random” (in a certain ideal 
model)



Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing” (one-way)
– A ciphertext can be decrypted with a decryption key

• Hashing is deterministic
– Hash the same input twice => same hash value

– Encrypt the same input twice => different ciphertexts



MAC via Hashing

Tag = Hash(K || message)
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MAC: message authentication code
(sometimes called a “tag”)

message, tag

=
?

Message authentication schemes:  A tool for protecting integrity.



Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3:  standard released by NIST in August 2015

• MD5 – Don’t use for security!
– 128-bit output

– Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t use for security!
– 160-bit output

– US government (NIST) standard as of 1993-95

– Theoretically broken 2005; practical attack 2017!



Authenticated Encryption

• What if we want both confidentiality and integrity?

• Natural approach: combine encryption scheme and a MAC.



How to combine Encryption and MACs?
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MAC not required to hide 
message! Deterministic!

Requires decrypting 
before checking tag!



What do Quantum Computers mean for 
Cryptography?
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Cryptography?

1. Implications for existing cryptography
● Quantum algorithms exist to solve “hard” assumptions quickly

○ Shor’s algorithm can solve factoring and discrete logarithm
● “Post-quantum” cryptography

○ Build asymmetric cryptography for classical computers based on assumptions that we 
think are “hard” even for quantum computers

○ “Lattice-based” cryptography
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1. Implications for existing cryptography
● Quantum algorithms exist to solve “hard” assumptions quickly

○ Shor’s algorithm can solve factoring and discrete logarithm
● “Post-quantum” cryptography

○ Build asymmetric cryptography for classical computers based on assumptions that we 
think are “hard” even for quantum computers

○ “Lattice-based” cryptography

2. Implications for future cryptography
● Quantum computing offers new hardness assumptions and new functionality 

from which to build cryptography


