CSE 484/M584:
Computer Security (and Privacy)

Spring 2025

David Kohlbrenner
dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner, Nirvan Tyagi. Thanks to Dan Boneh, Dieter
Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides
and materials

Admin

* HW1 due Wednesday

e Lab 2 (Cryptolab) next Wednesday

* Note there was an update to the short answer CTR question (there is an
oracle you can interact with now!)

e Start now if you haven’t!

* Lab 1a/b Exploits

* Check partner handin status ASAP!
* We will file CSSC cases shortly

How Can a Cipher Be Attacked?

Attackers knows ciphertext and encryption algorithm

— What else does the attacker know? Depends on the application in which the
cipher is used!

Ciphertext-only attack

KPA: Known-plaintext attack (stronger)
— Knows some plaintext-ciphertext pairs

CPA: Chosen-plaintext attack (even stronger)
— Can obtain ciphertext for any plaintext of his choice

CSE 484 / CSE M 584 - Spring 2025

Chosen Plaintext Attack

PIN is encrypted and
transmitted to bank

—
cipher(key,PIN)

Attacker eavesdrops

Attacker guesses PIN on the wire and learns
to a number ciphertext corresponding
of their choice to chosen plaintext PIN

.. repeat for any PIN value

CSE 484 / CSE M 584 - Spring 2025

How Can a Cipher Be Attacked?

Attackers knows ciphertext and encryption algorithm

— What else does the attacker know? Depends on the application in which the
cipher is used!

Ciphertext-only attack
KPA: Known-plaintext attack (stronger)
— Knows some plaintext-ciphertext pairs

CPA: Chosen-plaintext attack (even stronger)
— Can obtain ciphertext for any plaintext of his choice

CCA: Chosen-ciphertext attack (very strong)
— Can decrypt any ciphertext except the target

CSE 484 / CSE M 584 - Spring 2025

Very Informal Intuition T SaEu

requirement for a
modern encryption scheme

* Security against chosen-plaintext attack (CPA)
— Ciphertext leaks no information about the plaintext

— Even if the attacker correctly guesses the plaintext, they cannot verify their
guess

— Every ciphertext is unique, encrypting same message twice produces completely
different ciphertexts

* Implication: encryption must be randomized or stateful

CSE 484 / CSE M 584 - Spring 2025

The Shape of the Formal Approach

* INDistinguishability under Chosen Plaintext Attack (“IND-CPA”)
 Formalized cryptographic game

— Adversary submits pairs of plaintexts (M_0, M_1)

— Gets back ONE of the ciphertexts (C_b)

— Adversary must guess which ciphertext this is (C_0 or C_1)
— If they can do better than 50/50, they win

[e m et e o e 2
I oracle LR, [II]:

!
i
| private procedure Init():
i

| K < Kg()

! public procedure Encrypt(M°, M*'):
5 i

| ¢ <Enc(k,M°)

!mmmC

_ Encrypt(Mp, M)

C1
Encrypt(M2,M1)

(2

e A DS S
i oracle LR, [IT]:
]

[}

!

{

|
i private procedure Init(): ! C, .

i $!
E K <Kg() E Encrypt(M3, M;)

D 1 E - D

!

{

]

!

{

L}

!

-4

E public procedure Encrypt(M°, M1): s
, l

dCEE ﬁéﬂ-fSE M 584 - Spring 2025 d € {0,1}

_ Encrypt(M?, M)

3 -
| C < Enc(K,M")
; returnC

S U

Very Informal Intuition T SaEu

requirement for a
modern encryption scheme

* Security against chosen-plaintext attack (CPA)
— Ciphertext leaks no information about the plaintext

— Even if the attacker correctly guesses the plaintext, they cannot verify their
guess

— Every ciphertext is unique, encrypting same message twice produces completely
different ciphertexts

* Implication: encryption must be randomized or stateful

* Security against chosen-ciphertext attack (CCA)

— Integrity protection — it is not possible to change the plaintext by modifying the
ciphertext

CSE 484 / CSE M 584 - Spring 2025

Flavors of Cryptography

* Symmetric cryptography

— Both communicating parties have access to a shared random string K, called the
key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret key sk.

Asymmetric Setting for Encryption

Each party creates a public key pk and a secret key sk

M>| Encrypt I =I Decrypt IM>
1 1

pkg,sk, pk,,skg

pkB pkA Bob

pkg,Skg

Alice

pk,, Sk,

Adversary

pkA)pkB

CSE 484 / CSE M 584 - Spring 2025

Public Key Crypto: Basic Problem
public key | h

private key

public key |

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate a message

CSE 484 / CSE M 584 - Spring 2025

Public Key Crypto: Basic Problem

public key

. . ? .
public key ! - . - private key

Bob

lgnore for now: How do we

Given: Everybody knows Bob’s public key / now t's REALLY Bob's??
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate a message

CSE 484 / CSE M 584 - Spring 2025

Applications of Public Key Crypto

* Encryption for confidentiality

— Anyone can encrypt a message
e With symmetric crypto, must know secret key to encrypt

— Only someone who knows private key can decrypt

— Key management is simpler (or at least different)
* Secretis stored only at one site: good for open environments

* Digital signatures for integrity
— Can “sign” a message with your private key

CSE 484 / CSE M 584 - Spring 2025

Applications of Public Key Crypto

* Encryption for confidentiality

— Anyone can encrypt a message
e With symmetric crypto, must know secret key to encrypt

— Only someone who knows private key can decrypt

— Key management is simpler (or at least different)
* Secretis stored only at one site: good for open environments

* Digital signatures for integrity
— Can “sign” a message with your private key
* Session key establishment / “Key exchange”

— Exchange messages to create a secret session key
— Then switch to symmetric cryptography (why?)

CSE 484 / CSE M 584 - Spring 2025

Key Exchange

Alice

Compute shared secret k= KEx(sk, , pkg) Compute shared secret k= KEx(skg , pk,)

Groups

Group: A set G of elements and an operation €@ such that:

— Associative: (a@ b) D c=aPD (b D c)

_ Identity: a @ [=2 Notation: a2 =a@a, a3 = aPaPa, ...
— Inverse:a@ al=1

Groups

Group: A set G of elements and an operation €@ such that:
— Associative: (a@ b) D c=aPD (b D c)

Identlty a @ [=2 Notation: a2 =a@a, a3 = aPaPa, ...
— Inverse:a@ al=1
— Order: Number of elements in group

— Optional useful property: Cyclic: {g, g2, g3, ..., g’} = G for “generator” g

Groups

* Group: A set G of elements and an operation € such that:
— Associative: (a@ b) D c=aPD (b D c)
— Identity:a@® I1=a Notation: a?=a@a, a® = aPaPa, ...
— Inverse:a@ al=1
— Order: Number of elements in group
— Optional useful property: Cyclic: {g, g2, g3, ..., g°"4¢"} = G for “generator” g
* Example Group 1: Additive Group of Integers Modulo n (Z or Z/nZ)
— Special case: n = p where p is a prime (Z,)
- 6G={0,1, .., p-1}
— @ =+modp

Groups

* Group: A set G of elements and an operation € such that:
— Associative: (a@ b) D c=aPD (b D c)
— Identity:a @ I =a Notation: a?=a@a, a® = aPaPa, ...
— Inverse:a@ al=1
— Order: Number of elements in group
— Optional useful property: Cyclic: {g, g2, g3, ..., g°"4¢"} = G for “generator” g
* Example Group 1: Additive Group of Integers Modulo n (Z or Z/nZ)
— Special case: n = p where p is a prime (Z,)
- 6G={0,1, .., p-1}
— @G =+modp
* Example Group 2: Multiplicative Group of Integers Modulo n (Z *or (Z/nZ)*)
— Special case: n = p where p is a prime
- G6G={1,2,..,p-1}
— @ ="modp

Common Groups Under Modular Arithmetic

* Additive Group of Integers Modulo prime p (Z,)

— Example: p=11
— Can we find a generator?

Common Groups Under Modular Arithmetic

* Additive Group of Integers Modulo prime p (Z,)
— Example: p=11
— Can we find a generator?
— ALL non-identity elements are generators for prime-order groups!

Common Groups Under Modular Arithmetic

* Multiplicative Group of Integers Modulo prime p (Z,*)
— Example: p=11
— Can we find a generator?

Common Groups Under Modular Arithmetic

* Multiplicative Group of Integers Modulo prime p (Z,*)
— Example: p=11
— Can we find a generator?

gradescope!

Hardness Assumptions Over Groups

Hardness Assumptions Over Groups

* Discrete Logarithm (DL) problem over G for random generator g:
— Pickrandom x « {1, 2, ..., order}

— Compute X = g*
— Problem: Given g and X, compute x

CSE 484 / CSE M 584 - Spring 2025

Hardness Assumptions Over Groups

Discrete Logarithm (DL) problem over G for random generator g:
— Pickrandom x « {1, 2, ..., order}

— Compute X = g*

— Problem: Given g and X, compute x

problem:
— Pickrandom x,y < {1, 2, ..., order}
— Compute X =g¥and Y = g¥
— Problem: Given g, X, and Y, compute g*¥

Key Generation

e Public info on group G: order p and generator

. Pick secret key sk < {1, 2, ..., p}
ﬁ Set public key pk & gsk

Alice

Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, < X . . skg <y
pky < 8 : : pkg & g

Alice Bob

Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, < X . g . G skg <y
pky < g : gV : pkp < 8
<

Alice Bob

Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, € X . g’ . G skg <y
pk, < g : gV : pkg < 8"
<
Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, € X . g’ . G skg <y
pk, < g : gV : pkg < 8"
<
Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Compute symmetric key K= H(g") compute symmetric key K= H(g")

O

Alice Bob

Common paint %

Secret colours @

I RUI

\
A

Public transport

(assume
that mixture separation ._-_‘

is expensive) I I
Secret colours @

Common secret -

\/
)\

.+'.

iffie-Hellman: Conceptually

Common paint: pand g
Secret colors: x and y

Send over public transport:
gX
gy

Common secret: g~

[from Wikipedia]

CSE 484 / CSE M 584 - Spring 2025

Why is Diffie-Hellman Secure?

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, € X . g’ . G skg <y
pk, < g : gV : pkg < 8"
<
Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Compute symmetric key K= H(g") compute symmetric key K= H(g")

Why is Diffie-Hellman Secure?

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

Exactly the CDH problem!

sk, < X . g . G skg <y
pky < g : gV : pkp < 8
<

Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Compute symmetric key K= H(g") compute symmetric key K= H(g")

Hardness Assumptions Over Groups

Discrete Logarithm (DL) problem over G for generator g:
— Pick random x & {1, 2, ..., order}

— Compute X = g*

— Problem: Given g and X, compute x

problem:
— Pick random x,y €< {1, 2, ..., order}
— Compute X=g¥andY =gY
— Problem: Given g, X, and Y, compute g*

Caveat: Assumption doesn’t hold or holds differently for different groups!

— For ~128 bits of security:

— Z,: Not secure! Discrete log just corresponds to modular division!

— Z,*:2048-4096 bit prime SAFE p = 2g+1 for prime g, use generator for
subgroup of size g

Hardness Assumptions Over Groups

Discrete Logarithm (DL) problem over G for generator g:

— Pick random x ¢ {1, 2, ..., order}
— Compute X = g*
— Problem: Given g and X, compute x

80

problem:
— Pick random x,y €& {1, 2, ..., order}
— Compute X=g¥and Y =gY

— Problem: Given g, X, and Y, compute g*

Caveat: Assumption doesn’t hold or holds differently for different groups!

— For ~128 bits of security:

— Z,: Not secure! Discrete log just corresponds to modular division!

- Z, °*. 2048-4096 bit prime SAFE p = 2g+1 for prime q, use generator for
subgroup of size g

— Elliptic curves: (x,y) coordinates in Z, for 256 bit prime p

Person-in-the-Middle Attacks

* Diffie-Hellman protocol (by itself) does not provide integrity (against
active attackers)

CSE 484 / CSE M 584 - Spring 2025

Stepping Back: Asymmetric Crypto

* We've just seen session key establishment
— Can then use shared key for symmetric crypto

* Next: public key encryption
— For confidentiality

* Then: digital signatures
— For integrity

CSE 484 / CSE M 584 - Spring 2025

