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Admin

* HW1 due Wednesday

e Lab 2 (Cryptolab) next Wednesday

* Note there was an update to the short answer CTR question (there is an
oracle you can interact with now!)

e Start now if you haven’t!

* Lab 1a/b Exploits

* Check partner handin status ASAP!
* We will file CSSC cases shortly



How Can a Cipher Be Attacked?

Attackers knows ciphertext and encryption algorithm

— What else does the attacker know? Depends on the application in which the
cipher is used!

Ciphertext-only attack

KPA: Known-plaintext attack (stronger)
— Knows some plaintext-ciphertext pairs

CPA: Chosen-plaintext attack (even stronger)
— Can obtain ciphertext for any plaintext of his choice

CSE 484 / CSE M 584 - Spring 2025



Chosen Plaintext Attack

PIN is encrypted and
transmitted to bank

—
cipher(key,PIN)

Attacker eavesdrops

Attacker guesses PIN on the wire and learns
to a number ciphertext corresponding
of their choice to chosen plaintext PIN

.. repeat for any PIN value
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How Can a Cipher Be Attacked?

Attackers knows ciphertext and encryption algorithm

— What else does the attacker know? Depends on the application in which the
cipher is used!

Ciphertext-only attack
KPA: Known-plaintext attack (stronger)
— Knows some plaintext-ciphertext pairs

CPA: Chosen-plaintext attack (even stronger)
— Can obtain ciphertext for any plaintext of his choice

CCA: Chosen-ciphertext attack (very strong)
— Can decrypt any ciphertext except the target
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Very Informal Intuition T SaEu

requirement for a
modern encryption scheme

* Security against chosen-plaintext attack (CPA)
— Ciphertext leaks no information about the plaintext

— Even if the attacker correctly guesses the plaintext, they cannot verify their
guess

— Every ciphertext is unique, encrypting same message twice produces completely
different ciphertexts

* Implication: encryption must be randomized or stateful

CSE 484 / CSE M 584 - Spring 2025



The Shape of the Formal Approach

* INDistinguishability under Chosen Plaintext Attack (“IND-CPA”)
 Formalized cryptographic game

— Adversary submits pairs of plaintexts (M_0, M_1)

— Gets back ONE of the ciphertexts (C_b)

— Adversary must guess which ciphertext this is (C_0 or C_1)
— If they can do better than 50/50, they win
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Very Informal Intuition T SaEu

requirement for a
modern encryption scheme

* Security against chosen-plaintext attack (CPA)
— Ciphertext leaks no information about the plaintext

— Even if the attacker correctly guesses the plaintext, they cannot verify their
guess

— Every ciphertext is unique, encrypting same message twice produces completely
different ciphertexts

* Implication: encryption must be randomized or stateful

* Security against chosen-ciphertext attack (CCA)

— Integrity protection — it is not possible to change the plaintext by modifying the
ciphertext
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Flavors of Cryptography

* Symmetric cryptography

— Both communicating parties have access to a shared random string K, called the
key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret key sk.



Asymmetric Setting for Encryption

Each party creates a public key pk and a secret key sk

M>| Encrypt I =I Decrypt IM>
1 1

pkg,sk, pk,,skg

pkB pkA Bob

pkg,Skg

Alice

pk,, Sk,

Adversary

pkA)pkB
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Public Key Crypto: Basic Problem
public key | h

private key

public key |

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate a message
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Public Key Crypto: Basic Problem

public key

. . ? .
public key ! - . - private key

Bob

lgnore for now: How do we

Given: Everybody knows Bob’s public key / now t's REALLY Bob's??
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate a message
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Applications of Public Key Crypto

* Encryption for confidentiality

— Anyone can encrypt a message
e With symmetric crypto, must know secret key to encrypt

— Only someone who knows private key can decrypt

— Key management is simpler (or at least different)
* Secretis stored only at one site: good for open environments

* Digital signatures for integrity
— Can “sign” a message with your private key
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Applications of Public Key Crypto

* Encryption for confidentiality

— Anyone can encrypt a message
e With symmetric crypto, must know secret key to encrypt

— Only someone who knows private key can decrypt

— Key management is simpler (or at least different)
* Secretis stored only at one site: good for open environments

* Digital signatures for integrity
— Can “sign” a message with your private key
* Session key establishment / “Key exchange”

— Exchange messages to create a secret session key
— Then switch to symmetric cryptography (why?)
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Key Exchange

Alice

Compute shared secret k= KEx(sk, , pkg) Compute shared secret k= KEx(skg , pk,)



Groups

Group: A set G of elements and an operation €@ such that:

— Associative: (a@ b) D c=aPD (b D c)

_ Identity: a @ [ =2 Notation: a2 =a@a, a3 = aPaPa, ...
— Inverse:a@ al=1



Groups

Group: A set G of elements and an operation €@ such that:
— Associative: (a@ b) D c=aPD (b D c)

Identlty a @ [ =2 Notation: a2 =a@a, a3 = aPaPa, ...
— Inverse:a@ al=1
— Order: Number of elements in group

— Optional useful property: Cyclic: {g, g2, g3, ..., g’} = G for “generator” g



Groups

* Group: A set G of elements and an operation € such that:
— Associative: (a@ b) D c=aPD (b D c)
— Identity:a@® I1=a Notation: a?=a@a, a® = aPaPa, ...
— Inverse:a@ al=1
— Order: Number of elements in group
— Optional useful property: Cyclic: {g, g2, g3, ..., g°"4¢"} = G for “generator” g
* Example Group 1: Additive Group of Integers Modulo n (Z  or Z/nZ)
— Special case: n = p where p is a prime (Z,)
- 6G={0,1, .., p-1}
— @ =+modp



Groups

* Group: A set G of elements and an operation € such that:
— Associative: (a@ b) D c=aPD (b D c)
— Identity:a @ I =a Notation: a?=a@a, a® = aPaPa, ...
— Inverse:a@ al=1
— Order: Number of elements in group
— Optional useful property: Cyclic: {g, g2, g3, ..., g°"4¢"} = G for “generator” g
* Example Group 1: Additive Group of Integers Modulo n (Z  or Z/nZ)
— Special case: n = p where p is a prime (Z,)
- 6G={0,1, .., p-1}
— @G =+modp
* Example Group 2: Multiplicative Group of Integers Modulo n (Z *or (Z/nZ)*)
— Special case: n = p where p is a prime
- G6G={1,2,..,p-1}
— @ ="modp



Common Groups Under Modular Arithmetic

* Additive Group of Integers Modulo prime p (Z,)

— Example: p=11
— Can we find a generator?



Common Groups Under Modular Arithmetic

* Additive Group of Integers Modulo prime p (Z,)
— Example: p=11
— Can we find a generator?
— ALL non-identity elements are generators for prime-order groups!



Common Groups Under Modular Arithmetic

* Multiplicative Group of Integers Modulo prime p (Z,*)
— Example: p=11
— Can we find a generator?



Common Groups Under Modular Arithmetic

* Multiplicative Group of Integers Modulo prime p (Z,*)
— Example: p=11
— Can we find a generator?

gradescope!



Hardness Assumptions Over Groups



Hardness Assumptions Over Groups

* Discrete Logarithm (DL) problem over G for random generator g:
— Pickrandom x « {1, 2, ..., order}

— Compute X = g*
— Problem: Given g and X, compute x
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Hardness Assumptions Over Groups

Discrete Logarithm (DL) problem over G for random generator g:
— Pickrandom x « {1, 2, ..., order}

— Compute X = g*

— Problem: Given g and X, compute x

problem:
— Pickrandom x,y < {1, 2, ..., order}
— Compute X =g¥and Y = g¥
— Problem: Given g, X, and Y, compute g*¥



Key Generation

e Public info on group G: order p and generator

. Pick secret key sk < {1, 2, ..., p}
ﬁ Set public key pk & gsk

Alice



Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, < X . . skg <y
pky < 8 : : pkg & g

Alice Bob
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Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, € X . g’ . G skg <y
pk, < g : gV : pkg < 8"
<
Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥



Diffie-Hellman Protocol

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, € X . g’ . G skg <y
pk, < g : gV : pkg < 8"
<
Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Compute symmetric key K= H(g") compute symmetric key K= H(g")



O

Alice Bob

Common paint %

Secret colours @

I RUI

\
A

Public transport

(assume
that mixture separation ._-_‘

is expensive) I I
Secret colours @

Common secret -

\/
)\

.+'.

iffie-Hellman: Conceptually

Common paint: pand g
Secret colors: x and y

Send over public transport:
gX
gy

Common secret: g~

[from Wikipedia]
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Why is Diffie-Hellman Secure?

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

sk, € X . g’ . G skg <y
pk, < g : gV : pkg < 8"
<
Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Compute symmetric key K= H(g") compute symmetric key K= H(g")



Why is Diffie-Hellman Secure?

 Alice and Bob never met and share no secrets
* Publicinfo on group G: order p and generator

Exactly the CDH problem!

sk, < X . g . G skg <y
pky < g : gV : pkp < 8
<

Alice Bob

Compute shared secret k=(g¥)*=g*¥ Compute shared secret k=(g*)y=g*¥

Compute symmetric key K= H(g") compute symmetric key K= H(g")



Hardness Assumptions Over Groups

Discrete Logarithm (DL) problem over G for generator g:
— Pick random x & {1, 2, ..., order}

— Compute X = g*

— Problem: Given g and X, compute x

problem:
— Pick random x,y €< {1, 2, ..., order}
— Compute X=g¥andY =gY
— Problem: Given g, X, and Y, compute g*

Caveat: Assumption doesn’t hold or holds differently for different groups!

— For ~128 bits of security:

— Z,: Not secure! Discrete log just corresponds to modular division!

— Z,*:2048-4096 bit prime SAFE p = 2g+1 for prime g, use generator for
subgroup of size g



Hardness Assumptions Over Groups

Discrete Logarithm (DL) problem over G for generator g:

— Pick random x ¢ {1, 2, ..., order}
— Compute X = g*
— Problem: Given g and X, compute x

80

problem:
— Pick random x,y €& {1, 2, ..., order}
— Compute X=g¥and Y =gY

— Problem: Given g, X, and Y, compute g*

Caveat: Assumption doesn’t hold or holds differently for different groups!

— For ~128 bits of security:

— Z,: Not secure! Discrete log just corresponds to modular division!

- Z, °*. 2048-4096 bit prime SAFE p = 2g+1 for prime q, use generator for
subgroup of size g

— Elliptic curves: (x,y) coordinates in Z, for 256 bit prime p




Person-in-the-Middle Attacks

* Diffie-Hellman protocol (by itself) does not provide integrity (against
active attackers)
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Stepping Back: Asymmetric Crypto

* We've just seen session key establishment
— Can then use shared key for symmetric crypto

* Next: public key encryption
— For confidentiality

* Then: digital signatures
— For integrity
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