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Administrivia

● HW 1 (Threat Modeling) was due April 23rd!

● Lab 2 (Crypto Lab) is due on April 30

○ A real lab (think Lab1 difficulty) - don’t procrastinate!

○ New and untested. If anything seems off, let us know.



Public Key Encryption

How can two parties communicate privately WITHOUT 

having a shared secret key?



Public Key Encryption: setting

● Scenario: Alice wants to send Bob a message on the internet

○ Goal: confidentiality of data

○ Problem: people eavesdropping on network ➞ Alice and Bob don’t 

have a shared symmetric key

Intuition: Physical World
How can Alice send Bob a private package using an 
untrusted mail service?

Idea: Bob leaves some locks at the post office. Alice 

(or anyone else) can use a lock to send a locked 
package to Bob.
Only Bob has the key to the lock.



Public Key Encryption: Setting
● Cryptographic Solution: public key encryption (aka asymmetric encryption)

○ Bob generates a private key (secret decryption key), and public encryption 

key

■ Analogous to Bob’s key and locks in the physical world example.

○ Bob shares his public key in plaintext to Alice

○ Alice encrypts messages using Bob’s public key

○ Bob decrypts with his private key



Public Key Encryption: Considerations
● PKE is orders of magnitude less efficient than symmetric encryption.

● When would you use it? 

○ For Alice to send Bob a symmetric key, that they will use for longer 

communication using symmetric encryption (Hybrid Encryption)

■ Examples: TLS, SSH, PGP, Tor Network, End-to-End Encryption

○ If Alice needs to send a short message (short enough that it’s not worth 

establishing hybrid encryption).



Public key encryption: Syntax

PKE schemes are defined by the following three algorithms:

● KeyGeneration():
How Bob generates a public / secret key pair

● Encrypt(message, pk):
How Alice encrypts a message using Bob’s public key

● Decrypt(ciphertext, sk):
How Bob decrypts ciphertexts using his secret key

Security definition (informally): An eavesdropper learns nothing about 

Alice’s messages, even when seeing the ciphertext and Bob’s public key.



Using RSA for public key encryption



Plain-RSA PKE Scheme:

KeyGeneration():
Pick a public exponent e

Pick random large primes p and q
N = p * q
If gcd(p-1,e)>1 or gcd(q-

1,e)>1:
Start Over

d = e-1 mod lcm(p-1, q-1)
pk = (N, e)
sk = (N, d)
Return (pk, sk)

2^{16} + 1 is a 

common choice

(Lab2)

Think 1024-bits 

each.

If there’s time: how 

to generate?

Key security assumption: hard to compute the secret key 

from the public key (~ Can’t efficiently factor N)

By e-1 we mean that e*d = 1 (mod lcm(p-1, q-1)). 

e is invertible, by the previous check.

Use Euclidean Algorithm (not covered)



Plain-RSA PKE Scheme:

KeyGeneration():
Pick a public exponent e

(p, q) = random large primes
N = p * q
If gcd(p-1,e)>1 or gcd(q-

1,e)>1:
Start Over

d = e-1 mod lcm(p-1, q-1)
pk = (N, e)
sk = (N, d)
Return (pk, sk)

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
ct = me mod N
Return ct

Easy to compute 

with modular 

exponentiation



Plain-RSA PKE Scheme:

KeyGeneration():
Pick a public exponent e

(p, q) = random large primes
N = p * q
If gcd(p-1,e)>1 or gcd(q-

1,e)>1:
Start Over

d = e-1 mod lcm(p-1, q-1)
pk = (N, e)
sk = (N, d)
Return (pk, sk)

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
ct = me mod N
Return ct

Decrypt(ct, sk = (N, d)):
pt = ctd mod N
Decode m from pt
Return m

Correctness: follows from the fact that

pt ^ {d * e} = pt mod N



Plain RSA Activity 

Given these RSA parameters: p = 5, q = 11, e = 3. Compute the following by 

hand:

KeyGen():
N = p・q
L = lcm(p-1, q-1)
d = e-1 mod L

Encrypt(m, N, e):
pt = m represented 

in {0, … , N - 1} 
c = pte mod N

Decrypt(ct, N, d) 
pt = ctd mod N

Encrypt when pt=9

Decrypt when ct=14

What is N? 

What is L? 

(Reminder: lcm means 

smallest common multiple)

What is d? 



KeyGen():
N = p・q
L = lcm(p-1, q-1)
d = e-1 mod L

Encrypt(m, N, e):
pt = m represented 

in {0, … , N - 1} 
c = pte mod N

Decrypt(ct, N, d) 
pt = ctd mod N

Encrypt when pt=9

14

Decrypt when ct=14

9

What is N? 

55

What is L? 

20

What is d? 

7

Plain RSA Activity 

Given these RSA parameters: p = 5, q = 11, e = 3. Compute the following by 

hand:



Question: is Plain-RSA Secure?

KeyGen():
OMITTED FROM 
SLIDE

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
ct = me mod N
Return ct

Decrypt:
OMITTED FROM 
SLIDE

What happens if you encrypt a message that encodes to 0, 1, or another small number?

Ciphertext is 0, 1, or a number that never wrapped around N (easy to decrypt by finding 

the e’th root)

What happens if you encrypt the same message twice?

You get the same ciphertext twice

Can an adversary check if the ciphertext corresponds to some specific message m?

Yes, they just try encrypting m using the public key and see if the ciphertext match



Question: is Plain-RSA Secure?

KeyGen():
OMITTED FROM 
SLIDE

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
ct = me mod N
Return ct

Decrypt:
OMITTED FROM 
SLIDE

PLAIN-RSA IS INSECURE!

Recall: A secure encryption scheme MUST have a randomized encryption algorithm.

How can you fix it?



Attempted Fix: CTR-Mode-like Approach

KeyGen():
Same as 
plain RSA

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
r = random from {0, 1, …, N-1}
R = re mod N
Return ct = (r, (R + pt) mod N)

Decrypt(ct, sk = (N, d, e)):
Activity: How to decrypt?

Is this scheme secure?

Activity: what do you 

think?



Attempted Fix: CTR-Mode-like Approach

KeyGen():
Same as 
plain RSA

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
r = random from {0, 1, …, N-1}
R = re mod N
Return ct = (r, (R + pt) mod N)

Decrypt(ct, sk = (N, d, e)):
parse ct as (r, ct_block)
R = re mod N
pt = ct_block - R
Decode pt into m

Is this scheme secure?

Activity: what do you 

think?

No.

Decryption only uses 

public information, 

adversary can run the 

decryption algorithm on 

intercepted ciphertexts.



Attempted Fix 2:

KeyGen():
Same as 
plain RSA

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
r = random from {0, 1, …, N-1}
R = re mod N
Return ct = (R, (r + pt) mod N)

Decrypt(ct, sk = (N, d, e)):
Activity: how to decrypt?

Is this scheme secure?

Activity: what do you 

think?



Attempted Fix 2:

KeyGen():
Same as 
plain RSA

Encrypt(m, pk = (N, e)):
pt = represent m in {0, 1, …, N-1}
r = random from {0, 1, …, N-1}
R = re mod N
Return ct = (R, (r + pt) mod N)

Decrypt(ct, sk = (N, d, e)):
parse ct as (R, 

ct_block)
r = Rd mod N
pt = ct_block - r
Decode pt into m

Is this scheme secure?

Better! Only someone 

who knows d can learn 

anything about r and 

“unmask” pt

Remaining Problems:

● Messages are blocks of bits; hard to 

represent as integers in {0, 1, …, N-1} 
when N is not a power of 2.

○ Needs padding - bad for security!



Fix 2: use a hash (Bellare & Rogaway, 1993)

KeyGen():
Same as 
plain RSA

Encrypt(m, pk = (N, e)):
// m is a k-bit block
r = random from {0, 1, …, N-1}
R = re mod N
Return ct = (R, H(r) XOR m)

Decrypt(ct, sk = (N, d, e)):
Activity: how to decrypt?

Suppose we have a cryptographically secure hash function H that maps integers 

mod N to k-bit strings.

Is this scheme secure?

Activity: what do you 

think?



Fix 2: use a hash (Bellare & Rogaway, 1993)

KeyGen():
Same as 
plain RSA

Encrypt(m, pk = (N, e)):
// m is a k-bit block
r = random from {0, 1, …, N-1}
R = re mod N
Return ct = (R, H(r) XOR m)

Decrypt(ct, sk = (N, d, e)):
parse ct as (R, 

ct_block)
r = Rd mod N
m = ct_block XOR H(r)
Return m

Suppose we have a cryptographically secure hash function H that maps integers 

mod N to k-bit strings.

Is this scheme 

secure?

Yes! Only knowing d 

teaches anything 

about r and H(r), 

which functions as a 

one-time-pad to m

Remaining Problems:

● No data integrity!

○ What happens if adversary flips 

a bit in ct_block?



Fix 3: OAEP-RSA at a high level
(Bellare and Rogaway 1994 + subsequent works)

Using hashing, OAEP randomly embeds k-bit messages in an integer mod N. 

From there, use plain RSA on the randomly embedded message.

Original variant, as described by Dan Boneh in 2001:

(H,, G are hash functions, r is chosen at random, and ⊕ signifies bitwise XOR).

Advantages:

● Can encrypt messages that are roughly len(N)-256 bits using a ciphertext with 
the length of a single integer mod N

● Some integrity guarantee: Adversary cannot modify a ciphertext into another 
ciphertext with a valid padding.



RSA-Encryption Consideration

● PKE is slow(ish). Often only used to send a symmetric secret key.

○ Afterwards, you can use efficient symmetric encryption

● Other, more efficient and less finicky schemes exist (e.g. El-Gamal)

○ RSA still used a lot.

● Finicky.

○ Many designs and implementations vulnerable for side channels (especially 

padding oracle attacks)

○ Other unexpected attacks 

○ In Goldmine of Ps and Qs, you implement an attack that has to do with buggy key 

generation (real life bug - see suggested reading!)



[If there is time]

Secure Key Generation: demystifying 

prime number generation



Generating a Random Key

The security of RSA is reliant on N = p * q being hard to factor, where p and q are 

random very large (e.g. 1024-bit) primes.

● Lab2: for security, p and q must be very random.

Activity: How would you generate a random prime (with access to a random 

number generator)

Simplest Answer: Choose a random number of the appropriate bit-length (e.g. 

between 2^{1021} and 2^{1024}). If it is prime - great. Otherwise, try again.

● It is efficient to check if an integer is prime (polynomial in its bitlength)

● Prime number theorem: If you choose a random number, the probability of it 

being prime is ~1 / log(number).



Not all primes are created equal
For some values of p and q, N is easy to factor:

● If p or q is very small

○ Sequential search of prime factors will factor it

● If p and q are too close to each other

○ Sequential search from sqrt(N), or Fermat Factorization.

● If (p - 1) or (q - 1) have only small  prime factors

○ Pollard’s p - 1 algorithm can factor these efficiently

● If (p + 1) or (q + 1) have only small  prime factors

○ William’s p + 1 algorithm can factor it efficiently

It is easy to generate normal looking RSA keys, that are actually very weak. Can lead 

to sophisticated vulnerabilities.




