Section 3: Symmetric Encryption

How can two parties use a common

secret to communicate privately in

ey

ieraII any
exciting use of s
cryptography

the presence of eavesdroppers?

Slides by current and former TAs

Administrivia
HW 1 (Threat Modeling) due 4/23 @ 11:59 pm

Lab 2 out!
e 3required programming problems + 1 extra credit (not much harder)
e Wait until you learn about RSA for goldmine-of-ps-and-gs
e Individual write-ups
e Individual written problems (separate from the lab)

It is a new lab, please be patient with us!

Symmetric Encryption: Goal

0)

f—
J VA

Setting:

Eve
Monitors channel
Does not know key

Alice
(messages, key)

Goal: Bob wants to learn Alice’s messages.

Security (informally): Eve does not learn anything about the messages, even when

seeing many ciphertexts (and seeing ciphertexts for messages of his choice).

Symmetric Encryption: scheme syntax

4 AN @Ii’(%lf

Alice
(message, key)

Eve
Monitors channel

Does not know key

Bob
(key)

Key generation():
How Alice and Bob
pick their key.
Usually:
Pick random key k
Return k

Encrypt(k, pt):

How Alice encrypts her
message (pt) using the
key (k).

Returns a ciphertext.

Decrypt(k, ct):

How Bob decrypts
ciphertext (ct) using
the key (k).

Returns a plaintext.

Important Tool: Block Ciphers
“The workhorse of cryptography”

Definition: a function B that takes a key and a single
chunk (“block”) of plaintext as input and outputs a “cipher
block.”
e Block sizes on the order of 64 bits, 128 bits, 256 bits.
e Key size does not have to equal the block size.
e Each key defines a “random’” invertible permutation of
inputs to possible outputs.

Security: Without knowledge of the key, f(x) = B(Key, x)
looks like a random permutation on the plaintext blocks.

Important Tool: Block Ciphers

Building a secure block cipher: Not covered in this class
e Not much theoretical understanding of the block ciphers in use
e InLab2 you break an insecure block cipher (2DES)

This section: building a secure encryption scheme, assuming you have a
secure block cipher.
e Related to Lab2 “don’t count on counters” and “confession by
compression” problems.

Scheme 1: Block Ciphers Only

Assume we have a secure block-cipher B with block size 128. Consider the

following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k
Return k

Encrypt(k, pt):
ct = B(k, pt)
Return ct

Decrypt(k, ct):
Activity 1: How to decrypt?

Scheme 1: Block Ciphers Only

Assume we have a secure block-cipher B with block size 128. Consider the

following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k
Return k

Encrypt(k, pt):
ct = B(k, pt)
Return ct

Decrypt(k, ct):

Activity 1: How to decrypt?
pt = inverse_B(k, ct)
return pt

|s this scheme secure?
NO! Encrypting the same plaintext twice results in the same ciphertext.

Other problems:

Can only encrypt one block at a time.

Scheme 1: Conclusion

A secure encryption scheme MUST encrypts the same message to a
different ciphertext each time (with high probability).

How?

Include randomness in the encryption algorithm

Scheme 2: Block cipher with randomization

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for 128-bit plaintext:

Key generation: Encrypt(k, pt):
Pick random key k Pick random 128bit IV
Return k ct = IV || (B(k, IV) XOR pt)
Return ct

Decrypt(k, ct):
Activity 2: How to decrypt?

Scheme 2: Block cipher with randomization

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k

Encrypt(k, pt):
Pick random 128bit IV

Return k ct = IV || (B(k, IV) XOR pt)
Return ct
S — Is this scheme secure?
Activity 2: How to decrypt? Yes (can be proved assuming security of B)
Parse ct as (IV || ct_block)
pt = ct_block XOR B(k, IV) Problems:
return pt

Can only encrypt one block plaintexts.

Scheme 3: Same thing, more blocks!

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt,, .., pto:

Encrypt(k, pti;, .., ptll):
For i from 1 to n:
pick random IV

cti = 1V, || (B(k, IVI) XOR ptl)
ct = cty || « || ctl
Return ct

Decrypt(k, ct):
Activity 3: How to decrypt?

Scheme 3: Same thing, more blocks!

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt,, .., pto:

Encrypt(k, pti;, .., ptll):
For i from 1 to n:
pick random IV

cti = 1V || (B(k, IVI) XOR ptl)
ct = cty || « || ctl
Return ct

Decrypt(k, ct):

Parse ct as ct; || . || ctO
For i from 1 to n:
Parse cti as IVi || ct_block;

pti = ct_block; XOR B(k, IVi)
Return pt,, .., ptll

Is this scheme secure?
Yes (can be proved assuming
security of B)

Problems:
Ciphertext is twice the length
of the plaintext

Scheme 4: Insecure Shortcut

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt,, .., ptC:

Encrypt(k, pti;, .., ptll):
pick random IV
For i from 1 to n:
cti = B(k, IV) XOR pt;
ct = IV || cty || « || ctD
Return ct

Decrypt(k, ct):
Activity 4: How to decrypt?

Scheme 4: Insecure Shortcut

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt,, .., ptC:

Encrypt(k, pti;, .., ptll): . . .
oick random IV Why is this scheme insecure?
For i from 1 to n: Repeated plaintext blocks
cti = B(k, IV) XOR pt; result in repeated ciphertext
ct = IV || cty || « || ctl blocks
Return ct
Decrypt(k, ct): Advantage:
Parse ct as IV || ct, [| .. [] ctD ct length = 128 + (pt length)
For i from 1 to n:
pti = cti XOR B(k, IV)
Return pt,, .., ptl

Scheme 4: Insecure Shortcut

“Encryption”

_>

Photo credit: Wikipedia

Scheme 4: Conclusion

A secure encryption scheme MUST encrypt a repeated block to different
ciphertext blocks (with high probability).

How?

Scheme 5: Best we got (CTR mode)

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt,, .., ptC:

Encrypt(k, pti;, .., ptll):
pick random IV
For i from 1 to n:
IV, = (IV + i - 1) % 22{128}
ct; = B(k, IVi) XOR pti
ct = IV || cty || « || ctO
Return ct

Decrypt(k, ct):
Activity 5: How to decrypt?

Scheme 5: Best we got (CTR mode)

Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt,, .., ptC:

Encrypt(k, pti;, .., ptll):
pick random IV
For i from 1 to n:
IV, = (IV + i - 1) % 22{128}
ct; = B(k, IVO XOR pt
ct = IV || cty || « || ctO
Return ct

Decrypt(k, ct):
Parse ct as IV || cty; |]..|] ctD
For i from 1 to n:
IV, = (IV + i - 1) % 22{128}
pti: B(k, IVO XOR ct;
pt = pty [[| . [] ptd
Return pt

Is this scheme secure?

Yes! Can be proven, assuming B is a psuedo-random permutation

Advantage: ct length = 128 + (pt length)

Scheme 5 (CTR Mode): Diagram

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35.. 00000002
HEEEEEREREEER HEEEEEEEEEEEN HEEEEERREREEE
Key block cupher Key block cupher Key block cupher
encryption encryption encryption
Plaintext —— Plaintext —— Plaintext ————
CIITTTTITITITr T (I (TTTITTTTTTITT]
HENENERRREEER HENNRNRRRERER HENNERERRREER
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Diagram credit: Wikipedia

CTR Mode: Considerations

Other good things:
e decryption does not require inverting the block cipher
e plaintext padding often used but is not required
e |V is public, can be generated deterministically (but CAN'T use IV twice)

Bad things:
e UNAUTHENTICATED!
o If | see a ciphertext, | can modify it to decrypt to a different plaintext
without knowing the key
e Requires non-colliding 1Vs
e For provable security guarantees, you have to restart with a new IV often.

