
Section 3: Symmetric Encryption

Slides by current and former TAs

How can two parties use a common

secret to communicate privately in

the presence of eavesdroppers?

Administrivia
HW 1 (Threat Modeling) due 4/23 @ 11:59 pm

Lab 2 out!

● 3 required programming problems + 1 extra credit (not much harder)

● Wait until you learn about RSA for goldmine-of-ps-and-qs

● Individual write-ups

● Individual written problems (separate from the lab)

It is a new lab, please be patient with us!

Symmetric Encryption: Goal
Setting:

Alice
(messages, key)

Bob
(key)

Eve
Monitors channel

Does not know key

Goal: Bob wants to learn Alice’s messages.

Security (informally): Eve does not learn anything about the messages, even when

seeing many ciphertexts (and seeing ciphertexts for messages of his choice).

Symmetric Encryption: scheme syntax

Alice
(message, key)

Bob
(key)

Eve
Monitors channel

Does not know key

Key generation():
How Alice and Bob
pick their key.
Usually:

Pick random key k
Return k

Encrypt(k, pt):
How Alice encrypts her
message (pt) using the
key (k).
Returns a ciphertext.

Decrypt(k, ct):
How Bob decrypts
ciphertext (ct) using
the key (k).
Returns a plaintext.

Important Tool: Block Ciphers

“The workhorse of cryptography”

Definition: a function B that takes a key and a single
chunk (“block”) of plaintext as input and outputs a “cipher
block.”
● Block sizes on the order of 64 bits, 128 bits, 256 bits.
● Key size does not have to equal the block size.
● Each key defines a “random” invertible permutation of

inputs to possible outputs.

Security: Without knowledge of the key, f(x) = B(Key, x)
looks like a random permutation on the plaintext blocks.

Important Tool: Block Ciphers

Building a secure block cipher: Not covered in this class
● Not much theoretical understanding of the block ciphers in use
● In Lab2 you break an insecure block cipher (2DES)

This section: building a secure encryption scheme, assuming you have a
secure block cipher.
● Related to Lab2 “don’t count on counters” and “confession by

compression” problems.

Scheme 1: Block Ciphers Only
Assume we have a secure block-cipher B with block size 128. Consider the
following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k
Return k

Encrypt(k, pt):
ct = B(k, pt)
Return ct

Decrypt(k, ct):
Activity 1: How to decrypt?

Scheme 1: Block Ciphers Only
Assume we have a secure block-cipher B with block size 128. Consider the
following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k
Return k

Encrypt(k, pt):
ct = B(k, pt)
Return ct

Decrypt(k, ct):
Activity 1: How to decrypt?

pt = inverse_B(k, ct)
return pt

Is this scheme secure?
NO! Encrypting the same plaintext twice results in the same ciphertext.

Other problems:
Can only encrypt one block at a time.

Scheme 1: Conclusion

A secure encryption scheme MUST encrypts the same message to a
different ciphertext each time (with high probability).

How?

Include randomness in the encryption algorithm

Scheme 2: Block cipher with randomization
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k
Return k

Encrypt(k, pt):
Pick random 128bit IV
ct = IV || (B(k, IV) XOR pt)
Return ct

Decrypt(k, ct):
Activity 2: How to decrypt?

Scheme 2: Block cipher with randomization
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for 128-bit plaintext:

Key generation:
Pick random key k
Return k

Encrypt(k, pt):
Pick random 128bit IV
ct = IV || (B(k, IV) XOR pt)
Return ct

Decrypt(k, ct):
Activity 2: How to decrypt?

Parse ct as (IV || ct_block)
pt = ct_block XOR B(k, IV)
return pt

Is this scheme secure?
Yes (can be proved assuming security of B)

Problems:
Can only encrypt one block plaintexts.

Scheme 3: Same thing, more blocks!
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt₁, …, ptₙ:

Encrypt(k, pt₁, …, ptₙ):
For i from 1 to n:

pick random IVᵢ
ctᵢ = IVᵢ || (B(k, IVᵢ) XOR ptᵢ)

ct = ct₁ || … || ctₙ
Return ct

Decrypt(k, ct):
Activity 3: How to decrypt?

Scheme 3: Same thing, more blocks!
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt₁, …, ptₙ:

Encrypt(k, pt₁, …, ptₙ):
For i from 1 to n:

pick random IVᵢ
ctᵢ = IVᵢ || (B(k, IVᵢ) XOR ptᵢ)

ct = ct₁ || … || ctₙ
Return ct

Decrypt(k, ct):
Parse ct as ct₁ || … || ctₙ
For i from 1 to n:

Parse ctᵢ as IVᵢ || ct_blockᵢ
ptᵢ = ct_blockᵢ XOR B(k, IVᵢ)

Return pt₁, …, ptₙ

Is this scheme secure?
Yes (can be proved assuming
security of B)

Problems:
Ciphertext is twice the length
of the plaintext

Scheme 4: Insecure Shortcut
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt₁, …, ptₙ:

Encrypt(k, pt₁, …, ptₙ):
pick random IV
For i from 1 to n:

ctᵢ = B(k, IV) XOR ptᵢ
ct = IV || ct₁ || … || ctₙ
Return ct

Decrypt(k, ct):
Activity 4: How to decrypt?

Scheme 4: Insecure Shortcut
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt₁, …, ptₙ:

Encrypt(k, pt₁, …, ptₙ):
pick random IV
For i from 1 to n:

ctᵢ = B(k, IV) XOR ptᵢ
ct = IV || ct₁ || … || ctₙ
Return ct

Decrypt(k, ct):
Parse ct as IV || ct₁ || … || ctₙ
For i from 1 to n:

ptᵢ = ctᵢ XOR B(k, IV)
Return pt₁, …, ptₙ

Why is this scheme insecure?
Repeated plaintext blocks
result in repeated ciphertext
blocks

Advantage:
ct length = 128 + (pt length)

Scheme 4: Insecure Shortcut

“Encryption”

Photo credit: Wikipedia

Scheme 4: Conclusion

A secure encryption scheme MUST encrypt a repeated block to different
ciphertext blocks (with high probability).

How?

Scheme 5: Best we got (CTR mode)
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt₁, …, ptₙ:

Encrypt(k, pt₁, …, ptₙ):
pick random IV
For i from 1 to n:

IVᵢ = (IV + i - 1) % 2^{128}
ctᵢ = B(k, IVᵢ) XOR ptᵢ

ct = IV || ct₁ || … || ctₙ
Return ct

Decrypt(k, ct):
Activity 5: How to decrypt?

Scheme 5: Best we got (CTR mode)
Assume we have a secure block-cipher B with block size 128.
Consider the following encryption scheme for plaintext blocks pt₁, …, ptₙ:

Encrypt(k, pt₁, …, ptₙ):
pick random IV
For i from 1 to n:

IVᵢ = (IV + i - 1) % 2^{128}
ctᵢ = B(k, IVᵢ) XOR ptᵢ

ct = IV || ct₁ || … || ctₙ
Return ct

Decrypt(k, ct):
Parse ct as IV || ct₁ ||…|| ctₙ
For i from 1 to n:

IVᵢ = (IV + i - 1) % 2^{128}
ptᵢ = B(k, IVᵢ) XOR ctᵢ

pt = pt₁ || … || ptₙ
Return pt

Is this scheme secure?
Yes! Can be proven, assuming B is a psuedo-random permutation
Advantage: ct length = 128 + (pt length)

Scheme 5 (CTR Mode): Diagram

Diagram credit: Wikipedia

CTR Mode: Considerations

Other good things:
● decryption does not require inverting the block cipher
● plaintext padding often used but is not required
● IV is public, can be generated deterministically (but CAN’T use IV twice)

Bad things:
● UNAUTHENTICATED!

○ If I see a ciphertext, I can modify it to decrypt to a different plaintext
without knowing the key

● Requires non-colliding IVs
● For provable security guarantees, you have to restart with a new IV often.

