
Section 2: Buffer
Overflow

A guide on how to approach buffer overflows &
lab 1
Slides by James Wang, Amanda Lam, Ivan Evtimov, and Eric Zeng

Administrivia
Lab 1
● On GitLab:

○ Fork the lab1 repo & invite other team member
○ Private the repository (to prevent access by other groups)

● Server access:
○ ssh <your-netid>@umnak.cs.washington.edu
○ clone the forked repository

● Lab 1 Guide

https://courses.cs.washington.edu/courses/cse484/24au/assignments/lab1.pdf

Administrivia

Lab 1a is due 4/9 at 11:59pm

○ Upload your sploits.c files to Gradescope (add group member #2)

○ Individually submit a write-up to Gradescope for sploits 1-4

1. Lab 1 Overview
➔ 7 targets and their sources

located in /targets
Compile (but do not edit) the targets!

➔ 7 stub sploit files located in
/sploits
Make sure your final sploits are built
here!

Goal: Cause targets to execute
shellcode to gain access to a shell.
[The Aleph One Shellcode is provided
to you]

Useful resources/tools:

- Aleph One "Smashing the Stack for Fun and
Profit"

- Chien & Szor "Blended attack exploits..."

- Office Hours! Check website for times

https://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/stack.txt
https://courses.cs.washington.edu/courses/cse484/14au/assignments/blended.attacks.pdf

Lower addresses: 0x00000000

Higher addresses: 0xffffffff

A Review of Process Memory

The process views
memory as a
contiguous array of
bytes indexed by
addresses of length
32 bits (4 bytes).

The process also
has access to
registers on the
CPU. Some are used
to manage a lot of
what you will see,
so we will come
back to them later.

Heap & text

Lower addresses: 0x00000000

Stack

Higher addresses: 0xffffffff

A Review of Process Memory

At the “top” is the code we
are running (the text) and
the heap, where global
variables are stored.

At the “bottom” is the stack
where the arguments and
local variables of a
function are stored. (More
on this next.)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET

Higher addresses: 0xffffffff

Calling a Function

First: Arguments to the function
are pushed on the stack.

Then: the pointer to the
instruction after the call (RET)
is pushed on the stack.

Then: the jump/call
instruction is executed.

Stack grows this way (towards
lower addresses), as more
variables are declared and
functions are called

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

First Steps Inside a Function

(Typically) first instruction of
function:
Push the frame pointer (SFP)
on the stack.

Then (possibly not
immediately):
the stack is expanded to make
space for the local variables of
the function (Locals).

Stack grows this way (towards
lower addresses), as more
variables are declared and
functions are called

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

3 Important Registers

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

For convenience, we hold the
boundary of the region
dedicated to the current
function (“the stack frame”) in
%ebp.

The “top” of the stack - where
we push and pop - is defined
by the value in %esp.

The address of the instruction
we are executing is held in
%eip.

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

If you disassemble a function,
you see 2 instructions at the
end of a function:

leave

ret

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

leave can be thought of as
executing these
2 instructions:

mov %ebp, %esp

pop %ebp

ret

Note that pop reads the top of
the stack (what %esp is pointing
to) and puts it into the specified
register.

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

ret can be thought of as
executing this instruction:

mov %ebp, %esp

pop %ebp

pop %eip

*Note that ret is a bit more
complex in practice, but we
won’t worry about that for now.

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Instruction pointer: %EIP

mov %ebp, %esp

pop %ebp

pop %eip

(before)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack frame bottom,
%EBP and %ESP (for
now)

Instruction pointer: %EIP

mov %ebp, %esp

pop %ebp

pop %eip

(after)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack frame bottom,
%EBP and %ESP (for
now)

Instruction pointer: %EIP

mov %ebp, %esp

pop %ebp

pop %eip

(before)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack top: %ESP

Instruction pointer: %EIP

mov %ebp, %esp

pop %ebp

pop %eip

stack frame bottom,
%EBP

(after)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack top: %ESP

Instruction pointer: %EIP

mov %ebp, %esp

pop %ebp

pop %eip

stack frame bottom,
%EBP

(before)

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

“Free” space

Higher addresses: 0xffffffff

Exiting from a Function (In Action)

stack top: %ESP

Instruction pointer: %EIP

stack frame bottom,
%EBP

In reality, ret and/or the
rest of the instructions of
the caller might do more
here to deallocate args,
but we won’t worry about
that.

2. Using gdb
Similar to what we did in 351, gdb will be your
best friend over the next few weeks~~~

➔ Command (e.g. sploit0)
gdb -e sploit0 -s
../targets/target0 -d ../targets

➔ Setting breakpoints
- catch exec (Break when exec into new
process)

- run (starts the program)

- break main (Setting breakpoint @
main)

- continue

Useful gdb commands

● step [s]: execute next source code line

● next [n]: step over function

● stepi [si]: execute next assembly

instruction

● list : display source code

● disassemble [disas]: disassemble

specified function

Useful gdb commands (cont.)

● info register : inspect current register

values

● info frame : info about current stack

frame

● print [p] : inspect variable
○ e.g., p &buf (the pointer) or p buf (the value)

Useful gdb commands (cont.)

● x : examine memory (follow by / and format)
○ 20 words in hex at address: x/20xw

0xbffffcd4
○ Same as x/20x
○ x /5i $eip (print 5 instructions at %eip)

○ i for instruction

○ x for hex

Another useful tool: objdump

● objdump -d : disassemble an object file

● Hardcoding addresses -> Run through gdb first

● Don't be alarmed by Segfault (you might be on the right

track)

● Use memset& memcpy to construct big buffers

● GDB cheatsheet

● The exploits are generally in increasing difficulty* -> Plan

ahead and start early!

● Backup your exploit files periodically

● Be a good teammate

Additional tips

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

target0.c

Do you spot a security vulnerability?

No bounds check on input to strcpy()

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

RET
SFP

Locals

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

buf

Normal execution of
target0

This is the stack frame
for foo() after
executing strcpy(), if
we pass an input of <280
bytes

Copied input data
(orange) fits inside of buf

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

Localsbuf

RET
SFP

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

What if we had
passed an input of
size 288 bytes?

RET and SFP overwritten
by strcpy()

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

Locals“\xeb\x1f\x5e\x89\x76…”

RET
SFP

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

Writing the shellcode
to buf

If our input buffer starts
with the shellcode, it will
be copied into buf by
strcpy().

Heap & text

Lower addresses: 0x00000000

Stack

Arguments

Locals“\xeb\x1f\x5e\x89\x76…”

RET: address of shellcode
SFP

Higher addresses: 0xffffffff

stack frame top, also
stack top: %ESP

stack frame bottom,
%EBP

beginning of shellcode

Overwrite RET

The last 4 bytes of our
input will overwrite RET -
so in the input buffer, we
put the address of the
shellcode in the last 4
bytes.

sploit0.c

How do we implement this attack?

args[1] will be passed to target0.c, as
argv[1].

We’ll replace “hi there” with the attack
buffer/string.

Demo
Step 1: Figure out how big the buffer should be
Step 2: Place shellcode somewhere in the buffer
Step 3: Overwrite return address to point to the
shellcode

Step 1

Let's take a look the buffer and the
register information

gdb -e sploit0 -s ../targets/target0 -d
../targets
catch exec
run
break main
continue
s (step, repeat until after strcpy() is executed)

Step 1 (cont.)

Suppose instead of "hi there", we have
"hi there hi there hi there".

Start of buf now says “hi there hi there
hi there”

%ebp is a different address, because
input buffer is longer, changing the size
of the stack

Important note: Establish your buffer
size before overwriting RET with the
hardcoded address - the address will
change if you change the size!

Step 1 (cont.)

We want to overwrite the return
address (RET)

RET is the 4 bytes after SFP

SFP is 4 bytes after local variable

buf is a char array of size 280 bytes, so
the buffer need to be at least 288 bytes,
to overwrite RET

Step 2

What should we put inside the buffer?

Initialize everything with NOP
instruction (0x90)

- “NOP sled”

Step 2

You can pretty much put the shellcode
anywhere inside the buffer, as long as it
doesn't interfere with the EIP (It’s
easier to just put it in front)

Be aware that strcpy copies until it

sees the null-terminating byte.

Step 2

Let's double check the content of buf
using gdb!

Don’t forget to replace “hi there” in
sploit0.c with your constructed buffer

Step 3

Run code through gdb, figure out where
your shellcode is located

Modify buf + 284 (the location of RET)
to point to the address that your
shellcode starts

Exploit 0 (Solved)

Make sure you run gdb and figure out

what the actual address should be

Activity: Sploit 2 Stack Diagram

Draw a stack diagram for target2.c.

Hints:

● What happens when a function calls another function?

● Which way does the stack grow?

● What data does a stack frame need to store?

Solution: Sploit 2 Stack Diagram

First, main calls foo.

Solution: Sploit 2 Stack Diagram

Next, foo calls bar.

Solution: Sploit 2 Stack Diagram

Finally, bar calls nstrcpy.

Solution: Sploit 2 Stack Diagram

When nstrcpy returns, the stack pointer

(esp) moves to the bottom of the bar

stack frame, essentially removing the

nstrcpy stack frame. The base pointer

(ebp) is restored with the SFP from the

nstrcpy stack frame, so it now points to

the SFP in bar.

A similar process occurs when each of

the other functions return.

Deadlines

Week 2 - 4

Now
Assignment posted!

January 22
Part A due [exploits 1-4]

January 29
Final Deadline [exploits 5 - 7]

Final Words

- Good luck with lab 1, please start
early!!

- Post questions on discussion
board

- Come to office hours with
questions

