
CSE 484 / M584 Lab 4:
Root-Cause Analysis and Patching Lab

1 Structure
Due Dates

• Part A: Friday May 30th, 11:59pm (Max of 2 late days!)
• Part B: Friday May 30th, 11:59pm (Max of 2 late days!)
• Part C: Friday June 6th, 11:59pm (NO late days!)

Handin
• All components on Gradescope, see Deliverables.

Groups
• All components: Individual or partner

Grading
Points: 43 + EC
Note: unlike prior labs writeups may be partnered.

• Part A: 15 (11 patch, 4 writeup)
• Part B: 13 (one RCA writeup for exploit3 or exploit4)
• Part C: 15 (11 patch, 4 writeup: must be the same exploit as Part B’s RCA)
• Extra Credit: 5.6 (For doing another combination of RCA+Patch)

2 Formatting Notes for this Handout
• Programs, files, or tools are stylized like this.
• Commands for programs are stylized like this.
• Code, servers, and strings are stylized like this.

1

https://www.gradescope.com/courses/1010724


Contents
1 Structure 1

2 Formatting Notes for this Handout 1

3 Before you start 2

4 Overview 3

5 Background 3

6 Grading and Guidelines 5

7 Getting Started 7

8 Testing / Turn-in process for patches 8

9 Using a Browser (recommended) 8

10 Notes and Hints 8

11 Extra Credit 9

3 Before you start
• Fork the repo: https://gitlab.cs.washington.edu/dkohlbre/cse484-rcalab-25sp

• Make your fork private!

• Work on umnak.cs.washington.edu

• Read the READMEs in the repository.

• Read the Background section, it is actually important!

• Take a look at the RCA template on Gradescope

• Get the filled out exploit1 RCAs (UWE-484-01) from the course webpage RCA pdf

• Make sure you’ve seen the lecture on lab4.

2



https://gitlab.cs.washington.edu/dkohlbre/cse484-rcalab-25sp
https://courses.cs.washington.edu/courses/cse484/25sp/uwnetid/cse484_exploit1_rcas.pdf


4 Overview
This lab is designed to give you some experience with performing root-cause analysis 
(RCA) on exploits and with patching them. Conceptually, this is similar to the process 
that might happen if your company discovered an exploit being used in-the-wild against 
an application you make or if your company’s vulnerability disclosure program receives 
a proof-of-concept exploit for an application. You can see examples of these in Google 
Project Zero’s (P0) writeups of exploits found by Google’s Threat Analysis Group (TAG). 
We encourage reading a few of these as examples for your writeups. Also remember to 
look at the RCAs for exploit1!

You will need to take a working but unexplained exploit, determine what bugs in the 
application are used by this exploit, and propose an appropriate set of fixes for the appli­
cation. All exploits and patches relate to material we’ve covered in the course, and require 
you to draw on material you’ve learned in lecture/homeworks/labs previously.
For Part A, you get RCAs for the bug (exploit1), and only need to patch it.
For Part B, you will turn in an RCA for one of the new issues (exploit3 or 4).
For Part C, you will turn in a patch for the issue you analyzed in Part B.

4.1 tinyserv
The application being exploited and needing patches is a small open-source HTTP-only 
web server written in C. It probably has vulnerabilities beyond the ones you need to ex­
plain. On the code side, you’ll be given:

• The C HTTP server (tinyserv)
• Working exploits against that server: exploit1.sh – exploit4.sh
• A normal connection example to the server: nonexploit.sh
• You should run tinyserv with (exactly) ./tinyserv ./files/
• Remember to read READMEs!

5 Background

5.1 Part A:
You work on an open-source project: tinyserv. It is not the best tiny HTTP server, but it 
works. Most of your users use it to host small, static web pages from their own private 
servers, and it even has a fancy admin log that shows all previous visitor’s requests! The 
admin log and admin homepage are password protected by a completely random pass­
word when server starts, so only the administrators of the server can possibly access it.

But today you received a report of exploits being used against tinyserv in the wild. 
Your users are in danger! Thankfully a more experienced developer took the lead, and has 
performed a root-cause analysis (RCA) on the exploit sample to identify the underlying 
vulnerability.

As the junior developer on the project, this is a perfect opportunity to patch your first 
serious security bug. You’ll need to use their RCA and the exploit sample to guide you as 
you develop a patch.

3



5.2 Part B:
Now that you’ve proven yourself on patching exploit1, your team is trusting you with both 
the root-cause analysis and the patching for any future bugs. Today, you got three new 
reports of exploits being used against tinyserv. All 3 exploits have found a way to access 
the admin log without knowing the password. How are they doing this?!

Your fellow maintainers (the TAs, in section) will handle exploit2, don’t RCA/patch it. 
You need to choose one of exploit 3 or 4 and write up an RCA for it.

5.3 Part C:
It is time to write a patch for that exploit! Hopefully you will get feedback from your 
co-maintainers (your TAs) before your patch is done. (Don’t wait for feedback to start 
though.)

A meta-note: you will write a better RCA and (maybe) a better patch if you role-play 
a bit here. Remember that you are a maintainer of the tinyserv open-source project and 
are doing your best to solve this problem!

5.4 Deliverables
Please note that we only require 1 of the 2 exploits to be ‘solved’ in Parts B/C. This is 
to provide you alternatives if one of the exploits particularly stumps you, and allow for 
extra credit!

We strongly encourage you to look at both; it can be deceiving at first look which is 
‘easiest’ or ‘hardest’ to solve! All elements are turned in via Gradescope, turn them in as 
a pair if doing the project as a pair.

5.5 Part A
Submit to: Lab4 - PartA - Exploit1 Patch

• A patch for exploit1 named exploit1-patch.diff
• A short (1–3 paragraphs) description of your patch (description.txt)

– This must contain a clearly labeled paragraph describing if any functionality 
changes were made. (“None” may be appropriate.)

– This should be submitted at the same time as the patch: upload two files (a .txt 
text file and the .diff)

5.6 Part B
Submit to ONE of: Lab4 - PartB - Exploit3 RCA or Lab4 - PartB - Exploit4 RCA

• Fill out the RCA form on Gradescope.

4



5.7 Part C
Submit to ONE of: Lab4 - PartC - Exploit3 Patch or Lab4 - PartC - Exploit4 Patch

• A patch for exploit3 or 4 named exploit3-patch.diff or exploit4-patch.diff
• A short (1–3 paragraphs) description of your patch (description.txt)

– This must contain a clearly labeled paragraph describing if any functionality 
changes were made. (“None” may be appropriate.)

– This should be submitted at the same time as the patch: upload two files (a .txt 
text file and the .diff)

• You must submit to the same exploit as your Part B RCA.

Diff files All patch (.diff) files must be generated by the handin.sh script. Transfer them 
to your personal machine using scp. Do not copy-paste the text from these files. Do not 
modify them.

Writeup Your writeup MUST contain:
• A brief description of what your fix is supposed to achieve
• A brief description of the changes your patch made
• A clearly labeled paragraph stating if/what your patch changed anything about how 

users or admins use the server.
– For optimial patches, the answer is usually “No changes”.
– Some approaches to fixing problems will change minor functionality, and will 

lose points if that is not documented in the writeup here.

When submitting your writeup, we are expecting a plaintext file (e.g. not a word doc, 
not a pdf, etc.) Markdown syntax or other text-only formatting are fine. Gradescope 
allows uploading multiple files to a single assignment: please only upload ONE patch 
and ONE description to the assignment.

6 Grading and Guidelines

6.1 RCA Grading/Guidance
Most of the questions can be answered well in a few sentences. (The vulnerability details 
may need to be longer, more detail here is better.) Remember the difference between the exploit 
and the vulnerability. Carefully examine the bug(s) to determine all aspects of the vulner­
ability, not just what the exploit does with the vulnerability. Refer back to the starter RCA 
for a good example.

Technical accuracy matters in your RCAs; don’t make technical claims you haven’t 
seen evidence for (e.g., tinyserv doesn’t support HTTPS, so don’t claim something about 
HTTPS!)

5



6.2 Patch Grading/Guidance (11 points)
Patches will be graded approximately as follows:

• Does the patch attempt a good-faith fix of the bug? (If not, 0 points total for the 
patch, we won’t grade patches that don’t try to fix the correct problem.)

• Is the patch correctly formatted and only included relevant code changes? (1p)
• Does the patch pass all functionality tests? (2p) – Autograded
• Does the patch pass all exploitN tests? (2p) – Autograded
• Is this a generally good way to try and fix this specific bug? (2p)
• Is there any (important) functionality that is broken that we didn’t test for? (2p)
• Corner cases or small aspects of the bug that weren’t caught or were added? (1p)
• Will this patch make it hard to re-introduce the same bug in the future, or does it 

generally seem like a good long-term solution? (1p)

It is common that a short and simple patch will do well, but may miss 1–2 points. That 
is OK! A full credit patch is tricky to write and will require you to pay close attention to 
multiple aspects of the code and recall different parts of the course. We do not expect 
many students to earn perfects on their patches. There are secret tests that you will not 
see the grades for, but will affect our manual grading of non-autograded parts.

For patch quality, your fixes for each bug-exploit pair should completely fix the bug 
and prevent similar exploitation of that same bug – not just for the provided exploit – but 
not necessarily all classes of that bug. For example, if an exploit uses a buffer overflow 
vulnerability, then your patch should prevent further usage of the same buffer overflow. 
However, you would not need to fix every potential buffer overflow in the program. If we 
can change the length or characters of our exploit and retrigger an exploit using the same 
vulnerable code spot, then you have not patched the vulnerability. (Think about how the 
Lab2 XSS filters worked: a proper fix to that code would not simply change the filter from 
the one in XSS2 to the one in XSS4; the fix would prevent all XSS attempts via the ?url= 
parameter. That might involve changing code in >1 place)

Other ways to lose points:
• Including patches for multiple bugs in one patch file
• Including large-scale reformatting in your patch file (e.g. changing all spaces to tabs)

6.3 Patch Writeup Grading/Guidance (4 points)
You should submit a 1–2 paragraph writeup describing your patch along with the patch 
itself. Unlike the patch plan in the RCA, you should write this after you have finished the 
patch. Your writeup should concisely describe what changes you made, why you made 
them, and what the expected results of your changes are. If you believe you accidentally 
introduced new bugs, or weren’t able to fully fix the vulnerability, document that here. 
Think of this like the message you might have written to the other maintainers to explain 
this patch.

6



7 Getting Started
tinyserv is much larger than the other pieces of code we’ve looked at in this course, and it 
may not be obvious where to start! Remember that your goal is not to become the world 
expert on tinyserv, but to understand the basics of its operation and identify specific bugs.

7.1 Working on RCAs
We recommend that you not look at the RCA for exploit1 right away. Instead, spend some 
time trying to figure out why exploit1 works on your own (and/or pay attention to lec­
ture!) Then if you get completely stuck or think you’ve solved it take a look at the filled 
out RCA.

If you are not sure where to start in an RCA, consider what must be true for the exploit 
to accomplish its goal, and read some of the code that seems to perform the relevant ac­
tions. You can also look at the difference between nonexploit.sh and the exploits to see if 
there are obvious differences in what is being sent to tinyserv.

7.2 Working on Patches
When designing a patch, come at this the same way you would with a bug in your own 
code. You have some functionality you want to preserve (tinyserv should serve pages, 
allow admin logins, support response caching, etc.) and you have a bug that you want to 
fix.

We strongly recommend using a web browser to interact with your patched tinyserv 
to make sure it behaves reasonably. Historically we’ve seen patches that work fine for a 
simple connection example (nonexploit.sh) but break normal web browser interactions 
with tinyserv.

7.3 Using git for tinyserv
You should start by making a fork of the gitlab repository for tinyserv. Then you can share 
your fork with your partner and sync work there.

Once you have cloned the repository to the server you will be working on, we strongly 
recommend using branches to manage each patch independently.

We have already created one git branch per-exploit (called “dev-exploitN”) and every­
thing relevant is under version control.

You can switch branches in git with git checkout <branchname>
For example, if you’re switching back and forth between working on exploits 2/3 you 
might do:

• git commit -am ``Message detailing progress so far on exploit2''
• git checkout dev-exploit3
• …doing some work on exploit3 patching …
• git commit -am ``Message detailing progress so far in exploit3''
• git checkout dev-exploit2

7



8 Testing / Turn-in process for patches
Please carefully read the following and ask questions on Ed if anything is unclear. For each 
exploitN, we want one diff (exploitN-patch.diff) giving the changes needed for tinyserv.c. 
Your patch for one exploit must not contain the patch(es) for any other exploit(s). This lets us 
grade each patch independently.

To hand in a patch:

1. Run the ./handin.sh exploitN script making sure to read all of the output.

2. Check that the file it created (.diff) looks like it matches your changes

3. Upload to gradescope, it will get run through an autograder

4. If any tests fail, it is not a very good patch.

5. If all tests pass, it might be a good patch. We can’t test everything automatically!

handin.sh will put files that you’ll need to turn in in the turnins directory (again, like 
Lab1). It will also tell you the generated patch files and any backup files. All handin.sh 
does is use git to generate a list of changes you made in tinyserv.c.

When you are ready, use scp to get these files to your personal machine and upload to 
gradescope. Do not copy-paste the text from these files. Do not modify these files.

Make sure you also upload a description of your patch as a text file.

9 Using a Browser (recommended)
While all of the exploits can be run from the command line, you can also browse (and 
even exploit) the site using a browser.

Like WebLab, you’ll need to add a cookie to your browser’s cookie store. Each group 
has a unique LAB_GROUP_SECRET_KEY cookie that is randomly generated to avoid anyone 
accidentally talking to any other group’s tinyserv. This key is not part of the lab/exploits, 
and is not intended to have any bugs!

If you visit your server’s page without a cookie set, there will be a page with a box to set 
your cookie. Make sure you copy it in without quotes around it! Alternatively after open­
ing the browser console you can type: document.cookie = “LAB_GROUP_SECRET_KEY=your 
group secret”;

10 Notes and Hints
• You can build and run this on umnak.cs.washington.edu or on a local Linux setup 

(MacOS may be possible to get working but will require unsupported changes.)

• Check the READMEs and make sure you ran setup.sh

• You only need to modify tinyserv.c. You do not need to modify the exploit files or 
write any exploit code. (You are welcome to do so for helping understanding/de­
bugging though.)

8



• You cannot make changes that require adding new libraries. Any patch that does 
not build on the autograder will not get most of its credit.

• Port numbers have been automatically assigned based on your group number and 
are automatically inserted into tinyserv and your exploits. Please don’t change any 
of the port number related code, it should all ‘just work’.

• You can find your port number in rcalab_port

• You can find your group secret in rcalab_group_secret (note the extra quotes in it 
that you need to remove when adding the cookie to your browser!)

• Don’t leave tinyserv running when you aren’t using it; it is quite vulnerable! (It will 
self-terminate after 3 hours automatically.)

• Assume that everything under target/ (e.g. the README and the target/tinyserv) 
is hosted on the public repository for tinyserv

– This is the repo that your users would clone from github or whatever and then 
use as-is to run their webservers.

– They will be modifying stuff in files/ and adding/removing content there. They 
will not be modifying anything else.

• You can access the admin login page by visiting either of the admin links on the main 
page.

• To reiterate, everything related to the rcalab_group_secret is not part of the lab. You 
should not edit any of the code dealing with it or really worry about it at all. (Bugs 
found in it are worth EC though. Report ASAP if you find one.)

• nonexploit.sh, exploit1.sh, exploit2.sh, exploit3.sh, and exploit4.sh are shell scripts 
using the curl tool. Exploit3 also requires building exploit3_cookiegen. You can 
run them like this: ./exploit2.sh

• If you want more control over how your HTTP requests are sent, you can use nc or 
telnet.

• None of the bugs have to do with curl. curl is just a useful tool for generating http 
requests.

• We’ve talked about critical elements for each of the bugs in different parts of the 
course. You may want to rewatch lectures or review your notes for the relevant parts!

11 Extra Credit
You can earn extra credit on this assignment by turning in RCAs, patches, and patch write­
ups for one additional exploit.

Extra credit must be submitted to the “Lab 4 - EC - Exploit3” or “Lab 4 - EC - Exploit4” 
Gradescope assignment.

9



Extra credit components are worth 20% of their normal value.
You can also submit any security critical bugs you find to David for (minimal) bonus 

points. 

10


	Structure
	Formatting Notes for this Handout
	Before you start
	Overview
	Background
	Grading and Guidelines
	Getting Started
	Testing / Turn-in process for patches
	Using a Browser (recommended)
	Notes and Hints
	Extra Credit


The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.

