
CSE 484 / M584 Lab 2:
Cryptography Did Not Solve My Problem :(

1 Structure
Due Dates

• All components: Wednesday April 30th, 11:59pm

Handin All parts on Gradescope, see Deliverables. There are 2 required assignments + 
2 extra credit ones.

Groups
• Programming parts: Partners or individual
• Programming questions + Short answers: Individual

Grading
All written up components (short answers and the programming short answers) MUST 
be done individually: do not collaborate on the writeups.

Points: 37 + EC
• 5 per programming problem:

– 2-does-not-work
– dont-count-on-counters
– goldmine-of-ps-and-qs

• 1 per programming problem question (total of 8)
• Varies per short answer question (total of 14)
• 7 for Extra Credit (confession-by-compression: 3, written problems: 1 each)

2 Formatting Notes for this Handout
• Programs, files, or tools are stylized like this.
• Commands for programs are stylized like this.
• Code, assembly, and strings are stylized like this.

1

https://www.gradescope.com/courses/1010724


3 Before you start
You can work on either umnak.cs.washington.edu or on a local machine that has python3 
installed. We can provide some assistance with a local setup, but if you have any problems 
just work on umnak.

4 Overview
• The goal of this assignment is to get a hands-on feel for how various cryptographic 

constructions do and don’t work.
• There are 3 required programming problems and 1 extra credit.
• Each programming problem has several discussion questions.
• Finally, there are a series of short answer questions with no associated programming 

component.

4.1 Setup
First, you will need to make a fork of the lab2 gitlab:
https://gitlab.cs.washington.edu/dkohlbre/crypto-lab-25sp
Please make this fork private so that other students don’t find it! Share this fork with your 
partner if you have one. Then clone your fork to wherever you are working (we encourage 
umnak.)
Once you have done that, you will need to run the setup.sh script in the setup/ directory 
to setup the python environment.

Testing You can test a simulation of the autograder with ./test_locally.sh. You need 
the autograder on Gradescope (using different keys) to pass for credit.
If you want to directly call python for testing your scripts (e.g. python des_cracker.py), 
you will need to run source python-venv/bin/activate once per shell.

4.2 Deliverables
Required:

• Python scripts for 2-does-not-work, dont-count-on-counters, and goldmine-of-ps-
and-qs. These must pass the Gradescope autograder.

• Short answers to all programming problem questions, see Gradescope.
• Other short answer questions, see Gradescope.

Extra Credit:
• Python script for confession-by-compression, must pass autograder.
• Short answer questions for compression-by-confession.
• Short answer extension questions for other programming problems.

2

https://gitlab.cs.washington.edu/dkohlbre/crypto-lab-25sp


5 Programming problems
Each problem is unique, but has the same setup for you to work from: a python skeleton 
and a set of local tests you can run with ./test_locally.sh.

Each problem has a detailed README.md that explains the specifics of the problem 
and any notable other bits. You will need to read those READMEs to solve the problems.

Our solution for each problem is <20 lines of code. If yours is significantly longer, you 
may want to rethink your approach.

2-does-not-work Your friend is using two chained DES operations with different keys, 
can you recover their keys from only seeing a single ciphertext and plaintext pair?
NOTE: To make this problem reasonable to run, we’ll use DES with (effective) 14-bit keys. 
See the README for details.

dont-count-on-counters A server lets you download books, but the encryption and pro­
tocol it uses is not well thought out and they have a problem with how they generate “ran­
dom” initialization vectors (IVs). Given only the ciphertexts of someone downloading a 
book, can you recover some of the plaintext of the book?

goldmine-of-ps-and-qs Not everyone generates RSA keys the way they should, and 
(true story!) sometimes there are problems with real devices where they can choose par­
tially the same RSA keys. Given many public keys generated in this way, can you recover 
some of the secret(private) keys?

Extra Credit: confession-by-compression Encryption and compression don’t play nicely 
together. When a message is first compressed, and then encrypted, something surprising 
can be revealed. If you get to insert some content into that message, can you recover the 
rest of the message?

6 Short answer questions
All written components are to be done individually.

Misc

1. There are several written questions for this lab, which are unrelated to the program­
ming problems. See the Gradescope assignment for the questions.

2-does-not-work
1. What is the problem with 2DES?

2. At most, how many total 2DES operations (encryptions + decryptions) are needed 
to recover the original keys of 2DES? Assume keys are 14 bits.

3. Why does 3DES solve the vulnerability in 2DES?

3



dont-count-on-counters
1. What was the book in the test case we gave you?

2. How were you able to decipher the plaintext that the server sent to Alice?

3. Why couldn’t we decode all content in each ciphertext that the server sent to Alice?

goldmine-of-ps-and-qs
1. How many RSA keys did you factor for the example we gave?

2. How did you factor these keys efficiently, and why did it work?

7 Extra Credit questions
All questions here are bonus, and should be submitted to the Lab2 Extra Credit Grade­
scope component.

Extra credit: dont-count-on-counters extension
Let’s say that Alice no longer sends ready messages to the server, but you come across the 
following ciphertexts from the server (values are also in the README):
95afdf64ac58d516626107be975c6b5caad9da1cb3971310b9c93ff1785a2f8a1b4539ce59b5
a618a4d31c89a21de2b443dff3c45e42c93749aa81873ac1f0135f7923b69cb0a3a76849c93a
b678d1a8cf20dfe68268bd5ba761228cb4205802c3b3a33cc89cc19509c769ef0cc4cb7f0110
1b9cb4e3521d86a0d4d55f133e44
and
95afdf64ac58d516626107be975c6b5ca9df8e5aab8d5209fb963fcc3052318a034525c41cbd
b31ea5d30a82b900b6f90db2e49c1b63d13748bc9d8a36dab910557d77f087aaeca6204ec829
e53bcbacd12a8bf7c42dd40ca367208cb4235f43dcb7eb708988dac705c179ab0ecb86696551
0edfe6a27116c4b595ff52503a15b1f55bd7e72477e1b60a9b34f5143078899b80f76f002473
34e67e3f9858abfb
Given your knowledge of the book and AES CTR mode, what were the plaintexts?

Extra credit: goldmine-of-ps-and-qs extension
• What is the expected number of keys you will be able to factor, if you are given 300 

keys generated as described in the problem statement?
• How did you compute that?

– Assume that when generating keys we ensure that all public keys are distinct 
and no key is a perfect square.

– You can have very small inaccuracies if you recognize them in your answer and 
justify why they are very small.

– Use double dollar-signs to enter equations into Gradescope.

4



Extra credit: confession-by-compression
1. How did you recover the password efficiently? Why did it work?

2. Briefly describe one real-world compression side channel attack (2–3 sentences). 
Please include a link to your source.
Any source can work (e.g. news article, research paper, Wikipedia), as long as it is 
detailed enough to understand how the attacker got access to the side channel and 
how they used the information from the side-channel.

5



8 Miscellaneous

8.1 Credits
This project was originally designed by Sela Navot, Evan Lam, Nirvan Tyagi and David 
Kohlbrenner. 

6


	Structure
	Formatting Notes for this Handout
	Before you start
	Overview
	Setup
	Deliverables

	Programming problems
	Short answer questions
	Extra Credit questions
	Miscellaneous
	Credits



The document was declared to be of type PDF/A-4f but hasn't any attachments. LaTeX therefore added this dummy file.



