
CSE 484 Lab1 FAQ and hints

Understanding the frame pointer (ebp)
The stack frame pointer is a register used to keep track of the start of the current stack frame. In
x86 32-bit this is the ebp register.

Tracking the location of local stack variables
Understanding the usage of ebp is easier once you understand why it might exist.
Consider the following two approaches to how a compiled program can try to refer to local
(stack) variables:

1. Explicit tracking of offsets throughout the function.
 It could keep track of where the stack pointer is relative to the start of the stack frame, and do
the computation at compile time for where a variable is.
For example, if our function has the following two local variables:
int local1; // sub 4, $esp
char buf[32]; // sub 32, $esp
And it now wants to refer to local1, the compiler knows that will start at $esp+32, so will use
that when trying to load or store to local1

If later in that same function we allocate more locals:
char buf2[8]; //sub 8, $esp
and then the function wants to refer to local1 again, we need to refer to it differently ($esp +

40). This is entirely doable, and there are numerous clever optimizations for this.

2. Static reference point for the function duration.
We could instead, keep track of the START of the stack frame (with a frame pointer: $ebp), and
then always use that as a static reference point.
In this case, local1 is always going to be at $ebp-4, and buf will always be at $ebp-36,
regardless of how many more allocations are made in this stack frame.

So what is the saved frame pointer?
Traditionally, programs used the frame pointer. These days compilers and such are good
enough it is not necessary, we can compute the offsets at compile time.

Net effect: if the program is compiled with a stack frame pointer (e.g. we DIDN'T pass
-fomit-frame-pointer) then it is going to use $ebp to keep track of the start of the current
frame.

When we call a new function, we are then going to need to set $ebp to the top of this new stack

frame. Which means we need to save the old $ebp somewhere. And that is the 'saved frame

pointer' that we have in our stack diagrams

snprintf exploitation
FAQs and hints

It is worth rewatching the lecture recordings, and working through simple examples on
paper+gdb. Understanding how variable argument functions in C work is critical to making this
exploit work.
Solve the printftoy programs. Debug them and understand why they work. Solving them but
not understanding why will likely not help.
Write small programs that just call printf so you understand exactly how it works under
normal circumstances. Same for snprintf. (If you are having trouble replicating the build
environment, just edit the printftoy programs.)

Background and reminders

Reminders for calling conventions

Normal functions
All functions in Lab 1 use classic C calling conventions: All arguments are pushed onto the
program stack before calling, in reverse order.
E.g.
foo(int a, int* bptr)
When called from bar() will have a stack like
[...]
[end of bar’s local variables]
[bptr (pointer)]
[a (int)]
—--------------^ bar’s frame above, foo’s below —-----------------
[saved return address that points into bar’s code]
[saved ebp/frame pointer that points into the stack frame for bar]
[...]

Variable argument functions
When you call a variable argument function this means it is unclear how many arguments are
on the stack! E.g. printf(char* format_string, ……)
We just don’t know how many arguments will be there until we parse the format_string!

A good call to printf() from baz() might be: printf(“Hi %s, today’s number is
%i\n”, username, 5);
[...]
[end of baz’s local variables]
[5 (integer]
[username (pointer)]
[formatstring (pointer)]
—--------------^ bar’s frame above, printf’s below —-----------------
[saved return address that points into baz’s code]
[saved ebp/frame pointer that points into the stack frame for baz]
[...]

If format_string is supplied by an adversary then printf is going to get confused. We
assume that baz() called printf(attackerstring); here.
[...]
[end of baz’s local variables]
[formatstring (pointer)]
—--------------^ bar’s frame above, printf’s below —-----------------
[saved return address that points into baz’s code]
[saved ebp/frame pointer that points into the stack frame for baz]
[...]

If your format string contains any % operators, then printf is going to go rummaging around in
baz’s stack frame expecting data there to be arguments!
Try working with printftoy at this point. Make sure you understand exactly why it prints what
it does, when it does. Draw the stack frames.

printf’s operators
Read the printf manual pages, the format string attacks paper, and try using them in a normal
program.
You are mostly going to need integer printing specifiers, and the weird %n operator.

Integer ops
We generally use %x in class. It prints an integer, in hexadecimal.
%p is also useful. It is a shorthand for 0x%08x (e.g. print out the value in a standard-looking
pointer format, sized correctly for the machine.)

Pointer ops
You will also see us use %s. It expects a string as an argument, e.g. a char*. It will follow that
pointer and print it as a string.

Formatting specifiers
You can specify a required number of characters to print, e.g. %8x will always print 8 characters
no matter the number. printf(“%8x”,1) will print ` 1` … which is annoying to read, so we
usually specify what padding to use, and want it to be 0. So printf(“%08x”,1) will print
0000001.
There are other very useful specifiers. Read through the format strings paper!

%n and its internals
%n is the only printf operator that writes to an argument, rather than reading an argument. It
expects a int* as the argument, and will write the number of characters printed thus far to it.

%n expects a pointer as an argument (e.g. printf("abc%n", &someint);)

It then writes the number of characters printed thus far to that pointer (so after that above line,
someint == 3.)

If you have a target value you want to write you calculate how many characters have been
printed thus far up to the %n, and then figure out how many more you need to print.

E.g. if I want to store the value 0x34 to someint above, I would need to print 52-3=49 more
characters. One way to do that would be: printf("abc%49x%n",someval, &someint);
Now it is printing 3+49 characters, so the %n will write 52 (0x34) to someint. Note however,
the way we did that was to add another % operator to the string. That also required us
reasoning about another argument to printf.

Exploitation and snprintf

Approaching exploitation
Read the format strings paper, rewatch the recorded lectures.

Done? Great! You should have some idea of the flow of this exploit.
Remember that we need to have an objective: probably to overwrite a saved return address on
the stack somewhere.

%n is your one tool for writing values. You need to ensure that when it triggers, it gets a pointer
to wherever you wanted to write to as its argument. Go make sure you can solve and
understand printftoy2 at this point. If you can’t ask a question about that.

For your sploit6, you need to construct a stack that will provide the arguments you want it to for
the % operators you create.

snprintf
snprintf(char* out, size_t maxlen, char* fmt, …) is printf(char* fmt …),
but with:
An output buffer (out) instead of printing to the terminal.
A max number of characters to write (maxlen) to that buffer.

If you aren’t sure what its doing, try writing a small test program using snprintf correctly (e.g.
not an attacker string.)

We have given you a useful situation as the attacker: the caller of snprintf put the output
buffer on the stack right before it called snprintf. Think carefully about what that means for
what arguments snprintf will read if it needs arguments due to the format string.

Debugging
Don’t try debugging snprintf itself. You won’t make it out the other side!

Instead, try debugging by observing the output of snprintf.
Once snprintf is done executing, you can print buf as a string (e..g print buf) or examine
it byte by byte (e.g. x /300x or something).

Did snprintf crash instead of doing what you expected? Your string probably tried to use
something as a pointer that wasn’t a pointer! Swap your %n for a %p, and check what gets
printed to the buf. Note this may not do what you’d like if your %n comes after printing a ton of
characters… (buf does have a size limit!)

Another trick is to pick somewhere innocuous on the stack, and try and write values there before
you try overwriting the saved return address.

Always check that your write did what you expect after snprintf finishes execution. Don’t try
and do more than 1 write until you have 1 write working successfully.

	CSE 484 Lab1 FAQ and hints
	Understanding the frame pointer (ebp)
	Tracking the location of local stack variables
	1. Explicit tracking of offsets throughout the function.
	2. Static reference point for the function duration.

	So what is the saved frame pointer?

	snprintf exploitation
	Background and reminders
	Reminders for calling conventions
	Normal functions
	Variable argument functions

	printf’s operators
	Integer ops
	Pointer ops
	Formatting specifiers
	%n and its internals

	Exploitation and snprintf
	Approaching exploitation
	snprintf

	Debugging

