
CSE 484 / CSE M 584:
Hash Functions + Asymmetric

Cryptography

Winter 2024

Tadayoshi (Yoshi) Kohno

yoshi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• HW2: Due tomorrow (extended)

• Wednesday, Feb 7 (Zoom)

– Guest Lecture: Gennie Gebhart (EFF + UW)

• Friday, Feb 23 (in person)

– Guest Lecture: Jim O’Leary (Signal)

CSE 484 - Winter 2024

(Review) Hash Functions: Main Idea

CSE 484 - Winter 2024

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message
“digest”

message

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”

– A ciphertext can be decrypted with a decryption key… hashes have no
equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with
Hash(x’)

– Hash the same input twice → same hash value

– Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic
checksums” or “message digests”

CSE 484 - Winter 2024

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and
compare with the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords

• Don’t need to worry about where to store the key

• Cannot go from hash to password

CSE 484 - Winter 2024

Application: Password Hashing

• Which property do we need?

– One-wayness?

– (At least weak) Collision resistance?

– Both?

• This is not the whole story on password storage; we’ll return
to this later in the course.

CSE 484 - Winter 2024

Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received
by users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

CSE 484 - Winter 2024

goodFile
BigFirm

User

VIRUS

badFile

The NYTimes

hash(goodFile)

Application: Software Integrity

• Which property do we need?

– One-wayness?

– (At least weak) Collision resistance?

– Both?

CSE 484 - Winter 2024

Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
– One-wayness: hard to recover the/a valid password

• Integrity of software distribution
– Weak collision resistance

– But software images are not really random… may need full collision resistance if
considering malicious developers

• d

CSE 484 - Winter 2024

Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3: standard released by NIST in August 2015

• MD5 – Don’t use for security!
– 128-bit output

– Designed by Ron Rivest, used very widely

– Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t use for security!
– 160-bit output

– US government (NIST) standard as of 1993-95

– Theoretically broken 2005; practical attack 2017!

CSE 484 - Winter 2024

Recall: Achieving Integrity

CSE 484 - Winter 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

MAC with SHA3

• SHA3(Key || Message)

• Nice and simple ☺

• Previous hash functions couldn’t quite be used in this way
(see: length extension attack)

– HMAC construction (FYI)

• Why not encryption? (Historical reasons)

– Hashing is faster than block ciphers in software

– Can easily replace one hash function with another

– There used to be US export restrictions on encryption

CSE 484 - Winter 2024

Flavors of Cryptography

• Symmetric cryptography

– Both communicating parties have access to a shared random
string K, called the key.

• Asymmetric cryptography

– Each party creates a public key pk and a secret key sk.

CSE 484 - Winter 2024

Asymmetric Setting

CSE 484 - Winter 2024

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public Key Crypto: Basic Problem

CSE 484 - Winter 2024

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we
know it’s REALLY Bob’s??

Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt

– Key management is simpler (or at least different)
• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key

– Then switch to symmetric cryptography (why?)

CSE 484 - Winter 2024

Session Key Establishment

CSE 484 - Winter 2024

Modular Arithmetic

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

– For p=11, g=10

• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7

• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

–Numbers “wrap around” after they reach p

• g=7 is a “generator” of Z11*

CSE 484 - Winter 2024

Diffie-Hellman Protocol (1976)

CSE 484 - Winter 2024

Diffie-Hellman Protocol (1976)

• Alice and Bob never met and share no secrets

• Public info: p and g

– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a is in Zp* if there is an i such that a=gi mod p

CSE 484 - Winter 2024

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Example Diffie Hellman Computation

• PUBLIC
– p = 11
– g = 2
– (g is a generator for group mod p)

• Alice: x=9, sends 6 (g^x mod p = 2^9 mod 11 = 6)
• Bob: y=4, send 5 (g^y mod p = 2^4 mod 11 = 5)

• A compute: 5^x mod 11 (5^9 mod 11 = 9)
• B compute 6^y mod 11 (6^4 mod 11 = 9)
• Both get 9

• All computations modulo 11

CSE 484 - Winter 2024

Diffie-Hellman: Conceptually

CSE 484 - Winter 2024

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:
given gx mod p, it’s hard to extract x

– There is no known efficient algorithm for doing this

– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between

gxy mod p and gr mod p where r is random

CSE 484 - Winter 2024

Diffie-Hellman Caveats (1)

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against
passive attackers

– Common recommendation:
• Choose p=2q+1, where q is also a large prime

• Choose g that generates a subgroup of order q in Z_p*

• DDH is hard in this group

– Eavesdropper can’t tell the difference between the established key and a
random value

– In practice, often hash gxy mod p, and use the hash as the key

– Can use the new key for symmetric cryptography

CSE 484 - Winter 2024

Diffie-Hellman Caveats (2)

• Diffie-Hellman protocol (by itself) does not provide
authentication (against active attackers)

– Person in the middle attack (aka “man in the middle attack”)

CSE 484 - Winter 2024

Diffie-Hellman Key Exchange Today

• Important Note:

– We have discussed discrete logs modulo integers

– Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better

security and performance (size) properties

• Today’s de-facto standard

CSE 484 - Winter 2024

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment

– Can then use shared key for symmetric crypto

• Next: public key encryption

– For confidentiality

• Then: digital signatures

– For authenticity

CSE 484 - Winter 2024

Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair
(public key PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to
compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK,
easy to compute plaintext M
– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

CSE 484 - Fall 2022

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the [1,n]
interval that are relatively prime to n

– Two numbers are relatively prime if their greatest common divisor (gcd) is 1

– Easy to compute for primes: ϕ(p) = p-1

– Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

CSE 484 - Fall 2022

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)

– Choose small e, relatively prime to ϕ(n)
• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

CSE 484 - Fall 2022

How to compute?

- Extended Euclidian algorithm
- Wolfram Alpha ☺
- Brute force for small values

Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that gcd(e, ϕ(n))=1, find m such
that me=c mod n

– In other words, recover m from ciphertext c and public key (n,e) by
taking eth root of c modulo n

– There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy
(knowing factors means you can compute d = inverse of e mod (p-1)(q-1))

– It may be possible to break RSA without factoring n – but if it is, we don’t know how

CSE 484 - Fall 2022

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less
than n

• Don’t use RSA directly for privacy – output is deterministic!
Need to pre-process input somehow.

• Plain RSA also does not provide integrity

– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt
M⊕ G(r) || r⊕ H(M⊕ G(r))

– r is random and fresh, G and H are hash functions

CSE 484 - Fall 2022

Stepping Back: Asymmetric Crypto

• Last time we saw session key establishment (Diffie-Hellman)

– Can then use shared key for symmetric crypto

• We just saw: public key encryption

– For confidentiality

• Next time: digital signatures

– For authenticity

CSE 484 - Fall 2022

	Slide 1: CSE 484 / CSE M 584: Hash Functions + Asymmetric Cryptography
	Slide 2: Announcements
	Slide 3: (Review) Hash Functions: Main Idea
	Slide 4: Hashing vs. Encryption
	Slide 5: Application: Password Hashing
	Slide 6: Application: Password Hashing
	Slide 9: Application: Software Integrity
	Slide 10: Application: Software Integrity
	Slide 11: Which Property Do We Need? One-wayness, Collision Resistance, Weak CR?
	Slide 13: Common Hash Functions
	Slide 16: Recall: Achieving Integrity
	Slide 18: MAC with SHA3
	Slide 19: Flavors of Cryptography
	Slide 20: Asymmetric Setting
	Slide 21: Public Key Crypto: Basic Problem
	Slide 22: Applications of Public Key Crypto
	Slide 23: Session Key Establishment
	Slide 24: Modular Arithmetic
	Slide 25: Diffie-Hellman Protocol (1976)
	Slide 26: Diffie-Hellman Protocol (1976)
	Slide 27: Example Diffie Hellman Computation
	Slide 28: Diffie-Hellman: Conceptually
	Slide 29: Why is Diffie-Hellman Secure?
	Slide 30: Diffie-Hellman Caveats (1)
	Slide 31: Diffie-Hellman Caveats (2)
	Slide 33: Diffie-Hellman Key Exchange Today
	Slide 34: Stepping Back: Asymmetric Crypto
	Slide 35: Requirements for Public Key Encryption
	Slide 36: Some Number Theory Facts
	Slide 37: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]
	Slide 38: Why is RSA Secure?
	Slide 39: RSA Encryption Caveats
	Slide 40: Stepping Back: Asymmetric Crypto

