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Announcements

• HW2: Due tomorrow (extended)

• Wednesday, Feb 7 (Zoom)

– Guest Lecture: Gennie Gebhart (EFF + UW)

• Friday, Feb 23 (in person)

– Guest Lecture: Jim O’Leary (Signal)
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(Review) Hash Functions: Main Idea
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• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message 
“digest”

message



Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”

– A ciphertext can be decrypted with a decryption key… hashes have no 
equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with 
Hash(x’)

– Hash the same input twice → same hash value

– Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic 
checksums” or “message digests”
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and 
compare with the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords

• Don’t need to worry about where to store the key

• Cannot go from hash to password
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Application: Password Hashing

• Which property do we need?

– One-wayness?

– (At least weak) Collision resistance?

– Both?

• This is not the whole story on password storage; we’ll return 
to this later in the course.
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Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received 
by users without modification. 

Idea: given goodFile and hash(goodFile), very hard to find 
badFile such that hash(goodFile)=hash(badFile)
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Application: Software Integrity

• Which property do we need?

– One-wayness?

– (At least weak) Collision resistance?

– Both?
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Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
– One-wayness: hard to recover the/a valid password

• Integrity of software distribution
– Weak collision resistance

– But software images are not really random… may need full collision resistance if 
considering malicious developers

• d
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Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3:  standard released by NIST in August 2015

• MD5 – Don’t use for security!
– 128-bit output

– Designed by Ron Rivest, used very widely

– Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t use for security!
– 160-bit output

– US government (NIST) standard as of 1993-95

– Theoretically broken 2005; practical attack 2017!
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Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



MAC with SHA3

• SHA3(Key || Message)

• Nice and simple ☺

• Previous hash functions couldn’t quite be used in this way              
(see: length extension attack)

– HMAC construction (FYI)

• Why not encryption? (Historical reasons)

– Hashing is faster than block ciphers in software

– Can easily replace one hash function with another

– There used to be US export restrictions on encryption
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Flavors of Cryptography

• Symmetric cryptography

– Both communicating parties have access to a shared random 
string K, called the key.

• Asymmetric cryptography

– Each party creates a public key pk and a secret key sk.  
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Asymmetric Setting
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Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary



Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
             Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
             2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we 
know it’s REALLY Bob’s??



Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt

– Key management is simpler (or at least different)
• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key

– Then switch to symmetric cryptography (why?)
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Session Key Establishment
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Modular Arithmetic

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

– For p=11, g=10

• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7

• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

–Numbers “wrap around” after they reach p

• g=7 is a “generator” of Z11*
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Diffie-Hellman Protocol (1976) 
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Diffie-Hellman Protocol (1976) 

• Alice and Bob never met and share no secrets

• Public info: p and g

– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a is in Zp* if there is an i such that a=gi mod p
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Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman Computation

• PUBLIC
– p = 11
– g = 2
– (g is a generator for group mod p)

• Alice: x=9, sends 6 (g^x mod p = 2^9 mod 11 = 6)
• Bob: y=4, send 5 (g^y mod p = 2^4 mod 11 = 5)

• A compute:  5^x mod 11 (5^9 mod 11 = 9)
• B compute 6^y mod 11 (6^4 mod 11 = 9)
• Both get 9

• All computations modulo 11
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Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x

– There is no known efficient algorithm for doing this

– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between                                              

gxy mod p and gr mod p where r is random
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Diffie-Hellman Caveats (1)

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against 
passive attackers

– Common recommendation:
• Choose p=2q+1, where q is also a large prime

• Choose g that generates a subgroup of order q in Z_p*

• DDH is hard in this group

– Eavesdropper can’t tell the difference between the established key and a 
random value

– In practice, often hash gxy mod p, and use the hash as the key

– Can use the new key for symmetric cryptography
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Diffie-Hellman Caveats (2)

• Diffie-Hellman protocol (by itself) does not provide 
authentication (against active attackers)

– Person in the middle attack (aka “man in the middle attack”)
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Diffie-Hellman Key Exchange Today

• Important Note:

– We have discussed discrete logs modulo integers

– Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better 

security and performance (size) properties

• Today’s de-facto standard
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment

– Can then use shared key for symmetric crypto

• Next: public key encryption 

– For confidentiality

• Then: digital signatures

– For authenticity
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair 
(public key PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to 
compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, 
easy to compute plaintext M
– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the [1,n] 
interval that are relatively prime to n

– Two numbers are relatively prime if their greatest common divisor (gcd) is 1

– Easy to compute for primes: ϕ(p) = p-1

– Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)

– Choose small e, relatively prime to ϕ(n)
• Typically, e=3 or e=216+1=65537

– Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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How to compute?

- Extended Euclidian algorithm
- Wolfram Alpha ☺
- Brute force for small values



Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that gcd(e, ϕ(n))=1, find m such 
that me=c mod n

– In other words, recover m from ciphertext c and public key (n,e) by                           
taking eth root of c modulo n

– There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that 
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy                                                 
(knowing factors means you can compute d = inverse of e mod (p-1)(q-1))

– It may be possible to break RSA without factoring n – but if it is, we don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less 
than n

• Don’t use RSA directly for privacy – output is deterministic!
Need to pre-process input somehow.

• Plain RSA also does not provide integrity

– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt              
M⊕ G(r) || r⊕ H(M⊕ G(r))

– r is random and fresh, G and H are hash functions
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Stepping Back: Asymmetric Crypto

• Last time we saw session key establishment (Diffie-Hellman)

– Can then use shared key for symmetric crypto

• We just saw: public key encryption 

– For confidentiality

• Next time: digital signatures

– For authenticity
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