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Announcements

• Lab 1 due Monday
–Remember to turn things in both:
• Together: Your sploitX.c files
• Individually: Writeups for each sploit
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Recall: Common Communication Security Goals
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Privacy of data:
Prevent exposure of
information

Integrity of data:
Prevent modification of
information
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Recall: Symmetric Setting
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Both communicating parties have access to a 
shared random string K, called the key.



Ingredient: Randomness

• Many applications (especially security ones) require randomness
• Explicit uses:
– Generate secret cryptographic keys
– Generate random initialization vectors for encryption

• Other “non-obvious” uses:
– Generate passwords for new users
– Shuffle the order of votes (in an electronic voting machine)
– Shuffle cards (for an online gambling site)
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C’s rand() Function

• C has a built-in random function:  rand()
unsigned long int next = 1; 
/* rand:  return pseudo-random integer on 0..32767 */ 
int rand(void) {

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

} 
/* srand:  set seed for rand() */
void srand(unsigned int seed) { 

next = seed;
}

• Problem:  don’t use rand() for security-critical applications!
– Given a few sample outputs, you can predict subsequent ones
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More details: “How We Learned to Cheat at Online Poker: A Study in Software Security” 
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php


PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3
• Key used to sign software – now can load any software on PS3 and it will 

execute as “trusted”
• Due to bad random number: same “random” value used to sign all system 

updates
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http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/


How might we get “good” random numbers?
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Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically secure
pseudorandom numbers”

• Libraries include cryptographically secure pseudorandom 
number generators (CSPRNG)
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Obtaining Pseudorandom Numbers

• Linux:
– /dev/random – blocking (waits for enough entropy)
– /dev/urandom – nonblocking, possibly less entropy
– getrandom() – syscall! – by default, blocking

• Internally:
– Entropy pool gathered from multiple sources 

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs
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Obtaining Random Numbers

• Better idea:
– AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!
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Now that we have some randomness, let’s do: 

Symmetric Encryption
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Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.
Goal: send a message confidentially.
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?
---------------

Ignore for now: How is this achieved in practice??



One-Time Pad
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= 10111101…
---------------

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key = 
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext 

Cipher achieves perfect secrecy if and only if                           
there are as many possible keys as possible plaintexts,            
and every key is equally likely   (Claude Shannon, 1949)



Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely, regardless of 

attacker’s computational resources
– …as long as the key sequence is truly random

• True randomness is expensive to obtain in large quantities
– …as long as each key is same length as plaintext

• But how does sender communicate the key to receiver?
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Problems with the One-Time Pad?

• What potential security problems do you see with the one-
time pad?
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Dangers of Reuse
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= 00000000…
---------------

= 00110010…
00110010…Å

00110010… =
Å

00000000…P1
C1

= 11111111…
---------------

= 00110010…
11001101…Å

P2
C2

Learn relationship between plaintexts
C1ÅC2 = (P1ÅK)Å(P2ÅK) = 
(P1ÅP2)Å(KÅK) = P1ÅP2



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts
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Integrity?
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= 10111101…
---------------

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key = 
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext 

0

0



Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can easily change it to 

something else
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Reducing Key Size

• What to do when it is infeasible to pre-share huge random 
keys?
– When one-time pad is unrealistic…

• Use special cryptographic primitives: block ciphers, stream 
ciphers
– Single key can be re-used (with some restrictions)
– Not as theoretically secure as one-time pad
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Block Ciphers

• Operates on a single chunk (“block”) of plaintext
– For example, 64 bits for DES, 128 bits for AES
– Each key defines a different permutation of inputs to possible outputs
– Same key is reused for each block (can use short keys)
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Plaintext

Ciphertext

block
cipherKey



Keyed Permutation
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input
possible 
output

possible 
output etc.

000 010 111 …
001 111 110 …
010 101 000 …
011 110 101 …
… … …
111 000 110 …

For N-bit input:
2N! possible permutations

For K-bit key:
2K possible keys

Key = 00 Key = 01



Keyed Permutation

• Not just shuffling of input bits!
– Suppose plaintext = “111”.                
– Then “111” is not the only possible 

ciphertext!

• Instead:
– Permutation of possible outputs
– Use secret key to pick a permutation
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Ciphertext

block
cipherKey



Block Cipher Security

• Result should “look like” a random permutation on the inputs
– Recall:  not just shuffling bits.  N-bit block cipher permutes over 2N

inputs.

• Only computational guarantee of secrecy
– Not impossible to break, just very expensive

• If there is no efficient algorithm (unproven assumption!), then can only break by 
brute-force, try-every-possible-key search

– Time and cost of breaking the cipher exceed the value and/or useful 
lifetime of protected information
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