
CSE 484 / CSE M 584:
Cryptography: Randomness and

Symmetric Crypto

Fall 2024

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Lab 1 due Monday
–Remember to turn things in both:
• Together: Your sploitX.c files
• Individually: Writeups for each sploit

CSE 484 - Fall 2024

Recall: Common Communication Security Goals

CSE 484 - Fall 2024

Privacy of data:
Prevent exposure of
information

Integrity of data:
Prevent modification of
information

Alice

Bob

Mallorypassw
d = fo

obar ;
tra

nsfe
r $

100$100,000

Eve

Recall: Symmetric Setting

CSE 484 - Fall 2024

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a
shared random string K, called the key.

Ingredient: Randomness

• Many applications (especially security ones) require randomness
• Explicit uses:
– Generate secret cryptographic keys
– Generate random initialization vectors for encryption

• Other “non-obvious” uses:
– Generate passwords for new users
– Shuffle the order of votes (in an electronic voting machine)
– Shuffle cards (for an online gambling site)

CSE 484 - Fall 2024

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}
/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;
}

• Problem: don’t use rand() for security-critical applications!
– Given a few sample outputs, you can predict subsequent ones

CSE 484 - Fall 2024

CSE 484 - Fall 2024

CSE 484 - Fall 2024

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3
• Key used to sign software – now can load any software on PS3 and it will

execute as “trusted”
• Due to bad random number: same “random” value used to sign all system

updates
CSE 484 - Fall 2024

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

How might we get “good” random numbers?

CSE 484 - Fall 2024

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically secure
pseudorandom numbers”

• Libraries include cryptographically secure pseudorandom
number generators (CSPRNG)

CSE 484 - Fall 2024

Obtaining Pseudorandom Numbers

• Linux:
– /dev/random – blocking (waits for enough entropy)
– /dev/urandom – nonblocking, possibly less entropy
– getrandom() – syscall! – by default, blocking

• Internally:
– Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

CSE 484 - Fall 2024

Obtaining Random Numbers

• Better idea:
– AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!

CSE 484 - Fall 2024

Now that we have some randomness, let’s do:

Symmetric Encryption

CSE 484 - Fall 2024

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.
Goal: send a message confidentially.

CSE 484 - Fall 2024

?

Ignore for now: How is this achieved in practice??

One-Time Pad

CSE 484 - Fall 2024

= 10111101…

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key =
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

• Easy to compute
– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as theoretically possible
– Given a ciphertext, all plaintexts are equally likely, regardless of

attacker’s computational resources
– …as long as the key sequence is truly random

• True randomness is expensive to obtain in large quantities
– …as long as each key is same length as plaintext

• But how does sender communicate the key to receiver?

CSE 484 - Fall 2024

Problems with the One-Time Pad?

• What potential security problems do you see with the one-
time pad?

CSE 484 - Fall 2024

Dangers of Reuse

CSE 484 - Fall 2024

= 00000000…

= 00110010…
00110010…Å

00110010… =
Å

00000000…P1
C1

= 11111111…

= 00110010…
11001101…Å

P2
C2

Learn relationship between plaintexts
C1ÅC2 = (P1ÅK)Å(P2ÅK) =
(P1ÅP2)Å(KÅK) = P1ÅP2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

CSE 484 - Fall 2024

Integrity?

CSE 484 - Fall 2024

= 10111101…

= 00110010…
10001111…Å

00110010… =
Å

10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key =
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
– Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can easily change it to

something else

CSE 484 - Fall 2024

Reducing Key Size

• What to do when it is infeasible to pre-share huge random
keys?
– When one-time pad is unrealistic…

• Use special cryptographic primitives: block ciphers, stream
ciphers
– Single key can be re-used (with some restrictions)
– Not as theoretically secure as one-time pad

CSE 484 - Fall 2024

Block Ciphers

• Operates on a single chunk (“block”) of plaintext
– For example, 64 bits for DES, 128 bits for AES
– Each key defines a different permutation of inputs to possible outputs
– Same key is reused for each block (can use short keys)

CSE 484 - Fall 2024

Plaintext

Ciphertext

block
cipherKey

Keyed Permutation

CSE 484 - Fall 2024

input
possible
output

possible
output etc.

000 010 111 …
001 111 110 …
010 101 000 …
011 110 101 …
… … …
111 000 110 …

For N-bit input:
2N! possible permutations

For K-bit key:
2K possible keys

Key = 00 Key = 01

Keyed Permutation

• Not just shuffling of input bits!
– Suppose plaintext = “111”.
– Then “111” is not the only possible

ciphertext!

• Instead:
– Permutation of possible outputs
– Use secret key to pick a permutation

CSE 484 - Fall 2024

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

• Result should “look like” a random permutation on the inputs
– Recall: not just shuffling bits. N-bit block cipher permutes over 2N

inputs.

• Only computational guarantee of secrecy
– Not impossible to break, just very expensive

• If there is no efficient algorithm (unproven assumption!), then can only break by
brute-force, try-every-possible-key search

– Time and cost of breaking the cipher exceed the value and/or useful
lifetime of protected information

CSE 484 - Fall 2024

