
CSE 484 / CSE M 584:
Mobile Platform Security

Fall 2024

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Mobile Malware: Threat Modeling

Discussion Questions:

Q1: How might malware authors get malware onto phones?

Q2: What are some goals that mobile device malware authors
might have, or technical attacks they might attempt? How
might this differ from desktop settings?

CSE 484 - Fall 2024

What can go wrong?
“Threat Model” 1: Malicious applications

CSE 484 - Fall 2024

What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
– Premium SMS messages
– Track location
– Record phone calls
– Log SMS
– Steal data
– Phishing

CSE 484 - Fall 2024

Some of these are
unique to phones (SMS,

rich sensor data)

What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
– User data is leaked or stolen
• (on phone, on network, on server)

– Application is hijacked by an attacker

CSE 484 - Fall 2024

Mobile Platform Security

• Mobile platform security is actually pretty good!
• Why?

CSE 484 - Fall 2024

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

CSE 484 - Fall 2024

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

CSE 484 - Fall 2024

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

CSE 484 - Fall 2024

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple applications run with the

same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions

CSE 484 - Fall 2024

Learning Lessons

• Application isolation is great!

• Phones drew lessons from desktops
• Desktops drew lessons from phones (and prior desktops)
– Windows 10 App Isolation
– MacOS App Sandbox

• Browsers learned too
– Site Isolation

CSE 484 - Fall 2024

More Details: Android

• Based on Linux
• Application sandboxes

– Applications run as separate UIDs, in
separate processes.

– Memory corruption errors only lead to
arbitrary code execution in the context of
the particular application, not complete
system compromise!

– (Can still escape sandbox – but must
compromise Linux kernel to do so.)
à allows rooting

CSE 484 - Fall 2024

Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive
resources?

2. Communication: How can applications communicate with
each other?

CSE 484 - Fall 2024

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by
limiting applications’ access to:
– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant
permissions to applications?

CSE 484 - Fall 2024

Android’s Old Approach: Manifests

• Big list of things the app wants at install time

CSE 484 - Fall 2024

Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.

CSE 484 - Fall 2024

Do users understand the warnings?

Are Manifests Usable?

CSE 484 - Fall 2024

[Felt et al.]

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?

CSE 484 - Fall 2024

[Felt et al.]

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS always had).
• Big change! Now app developers needed to check for

permissions or catch exceptions.

CSE 484 - Fall 2024

State of the Art

• Time-of-use prompts

• More context in UIs
• Proactive monitoring of

permissions usage
• Lots of privacy

features+settings

CSE 484 - Fall 2024

Still not a totally solved problem…

• Prompts are disruptive and lead to “prompt fatigue”
• In practice, prompts are still overly permissive
– Apps can use permissions for other purposes and at other times

CSE 484 - Fall 2024

(2) Inter-Process Communication

• Primary mechanism in Android: Intents
– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name
• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW)
and/or data (URI and MIME type)
• Apps specify Intent Filters for their components.

CSE 484 - Fall 2024

Eavesdropping and Spoofing

• Buggy apps might accidentally:
– Expose their component-to-component messages publicly
à eavesdropping

– Act on unauthorized messages they receive
à spoofing

CSE 484 - Fall 2024

[Chin et al.]

Permission Re-Delegation

• An application without a permission gains additional privileges
through another application.

• Settings application is
deputy: has permissions,
and accidentally exposes
APIs that use those
permissions.

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

CSE 484 - Fall 2024

Also: Incomplete Isolation

CSE 484 - Fall 2024

Embedded UIs and libraries always run with the host
application’s permissions! (No same-origin policy here…)

Other Android Security Features

• Secure hardware
• Full disk encryption
• Modern memory protections (e.g., ASLR, non-executable stack)
• Application signing
• App store review

CSE 484 - Fall 2024

Memory Management

• Address Space Layout Randomization to randomize addresses on
stack

• Hardware-based No eXecute (NX) to prevent code execution on
stack/heap

• Stack guard derivative
• Some defenses against double free bugs (based on OpenBSD’s

dmalloc() function)
• etc.

[See http://source.android.com/tech/security/index.html]

CSE 484 - Fall 2024

http://source.android.com/tech/security/index.html

Android Fragmentation
• Many different variants of

Android (unlike iOS)
– Motorola, HTC, Samsung, …

• Less secure ecosystem
– Inconsistent or incorrect

implementations
– Slow to propagate kernel

updates and new versions
– Many changes made in past few

years (e.g., Project Treble)

CSE 484 - Fall 2024

What about iOS?

• Apps are sandboxed
• Encrypted user data
– Big news a few years ago…

• “App Tracking Transparency”
prevents cross-app tracking

• App Store review process is
(was? maybe?) stricter
– But not infallible: e.g., see Wang

et al. “Jekyll on iOS: When Benign
Apps Become Evil” (USENIX Security 2013)

CSE 484 - Fall 2024

• No “sideloading” apps
– Unless you jailbreak

