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Mobile Malware: Threat Modeling

Discussion Questions:

Q1: How might malware authors get malware onto phones? 

Q2: What are some goals that mobile device malware authors 
might have, or technical attacks they might attempt? How 
might this differ from desktop settings?
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What can go wrong?
“Threat Model” 1: Malicious applications
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What can go wrong?
Threat Model 1: Malicious applications

Example attacks:
– Premium SMS messages 
– Track location
– Record phone calls
– Log SMS 
– Steal data
– Phishing  
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Some of these are 
unique to phones (SMS, 

rich sensor data)



What can go wrong?
Threat Model 2: Vulnerable applications

Example concerns:
– User data is leaked or stolen 
• (on phone, on network, on server)

– Application is hijacked by an attacker
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Mobile Platform Security

• Mobile platform security is actually pretty good!
• Why?
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

CSE 484 - Fall 2024



Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

CSE 484 - Fall 2024



Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

CSE 484 - Fall 2024

Apps can do anything the UID 
they’re running under can do.



What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple applications run with the 

same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions 
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Learning Lessons

• Application isolation is great!

• Phones drew lessons from desktops
• Desktops drew lessons from phones (and prior desktops)
– Windows 10 App Isolation
– MacOS App Sandbox

• Browsers learned too
– Site Isolation
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More Details: Android

• Based on Linux
• Application sandboxes

– Applications run as separate UIDs, in 
separate processes.

– Memory corruption errors only lead to 
arbitrary code execution in the context of 
the particular application, not complete 
system compromise!

– (Can still escape sandbox – but must 
compromise Linux kernel to do so.)  
à allows rooting
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Challenges with Isolated Apps

So mobile platforms isolate applications for security, but…

1. Permissions: How can applications access sensitive 
resources?

2. Communication: How can applications communicate with 
each other?
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(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent such attacks by 
limiting applications’ access to:
– System Resources (clipboard, file system).
– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant 
permissions to applications?
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Android’s Old Approach: Manifests

• Big list of things the app wants at install time
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Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.
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Do users understand the warnings?

Are Manifests Usable?
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[Felt et al.]



Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?
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[Felt et al.]



Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS always had).
• Big change! Now app developers needed to check for 

permissions or catch exceptions.
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State of the Art

• Time-of-use prompts

• More context in UIs
• Proactive monitoring of 

permissions usage
• Lots of privacy 

features+settings
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Still not a totally solved problem…

• Prompts are disruptive and lead to “prompt fatigue”
• In practice, prompts are still overly permissive
– Apps can use permissions for other purposes and at other times
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(2) Inter-Process Communication

• Primary mechanism in Android: Intents
– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name
• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW) 
and/or data (URI and MIME type)
• Apps specify Intent Filters for their components.
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Eavesdropping and Spoofing

• Buggy apps might accidentally:
– Expose their component-to-component messages publicly              
à eavesdropping

– Act on unauthorized messages they receive      
à spoofing
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[Chin et al.]



Permission Re-Delegation

• An application without a permission gains additional privileges 
through another application.

• Settings application is                     
deputy: has permissions,
and accidentally exposes                                                                                            
APIs that use those                                               
permissions.

API

Settings

Demo 
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]
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Also: Incomplete Isolation
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Embedded UIs and libraries always run with the host 
application’s permissions! (No same-origin policy here…)



Other Android Security Features

• Secure hardware
• Full disk encryption
• Modern memory protections (e.g., ASLR, non-executable stack)
• Application signing
• App store review
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Memory Management

• Address Space Layout Randomization to randomize addresses on 
stack

• Hardware-based No eXecute (NX) to prevent code execution on 
stack/heap

• Stack guard derivative
• Some defenses against double free bugs (based on OpenBSD’s

dmalloc() function)
• etc.

[See http://source.android.com/tech/security/index.html]
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http://source.android.com/tech/security/index.html


Android Fragmentation
• Many different variants of 

Android (unlike iOS)
– Motorola, HTC, Samsung, …

• Less secure ecosystem
– Inconsistent or incorrect 

implementations
– Slow to propagate kernel 

updates and new versions
– Many changes made in past few 

years (e.g., Project Treble)
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What about iOS?

• Apps are sandboxed
• Encrypted user data
– Big news a few years ago…

• “App Tracking Transparency”
prevents cross-app tracking

• App Store review process is 
(was? maybe?) stricter
– But not infallible: e.g., see Wang 

et al. “Jekyll on iOS: When Benign 
Apps Become Evil” (USENIX Security 2013)
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• No “sideloading” apps
– Unless you jailbreak


