
CSE 484 / CSE M 584:
Asymmetric Cryptography

Fall 2024

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Things due
– Lab 1: today!
– Homework 2: Next Friday
– CSE 584M: Don’t forget about weekly research readings

• Roadmap
– Today: Finish asymmetric crypto
– Friday: Crypto in practice (on the web)
– Next week: Web security

CSE 484 - Fall 2024

Reminder: Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a is in Zp* if there is an i such that a=gi mod p

CSE 484 - Fall 2024

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Diffie-Hellman: Conceptually

CSE 484 - Fall 2024

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:
given gx mod p, it’s hard to extract x
– There is no known efficient algorithm for doing this
– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy
• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between
gxy mod p and gr mod p where r is random

CSE 484 - Fall 2024

Diffie-Hellman Caveats (1)

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against
passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

– Eavesdropper can’t tell the difference between the established key and a
random value

– In practice, often hash gxy mod p, and use the hash as the key
– Can use the new key for symmetric cryptography

CSE 484 - Fall 2024

Diffie-Hellman Caveats (2)

• Diffie-Hellman protocol (by itself) does not provide
authentication (against active attackers)
– Person in the middle attack (aka “man in the middle attack”)

CSE 484 - Fall 2024

ge mod p

ga mod p

gb mod p

ge mod p

Alice Eve Bob
gae mod p gbe mod p

Diffie-Hellman Key Exchange Today

• Important Note:
– We have discussed discrete logs modulo integers
– Significant advantages in using elliptic curve groups

• Groups with some similar mathematical properties (i.e., are “groups”) but have better
security and performance (size) properties

• Today’s de-facto standard

CSE 484 - Fall 2024

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
– Can then use shared key for symmetric crypto

• Next: public key encryption
– For confidentiality

• Then: digital signatures
– For authenticity

CSE 484 - Fall 2024

Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair
(public key PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to
compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK,
easy to compute plaintext M
– Infeasible to learn anything about M from C without SK
– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

CSE 484 - Fall 2024

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the [1,n]
interval that are relatively prime to n
– Two numbers are relatively prime if their greatest common divisor (gcd) is 1

• Example: 34 (factors: 1, 2, 17, 34) and 35 (1, 5, 7, 35)

– Easy to compute for primes: ϕ(p) = p-1
– Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

CSE 484 - Fall 2024

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537
– Compute unique d such that ed ≡ 1 mod ϕ(n)

• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n); private key = (d,n)
• Encryption of m: c = me mod n
• Decryption of c: cd mod n = (me)d mod n = m

CSE 484 - Fall 2024

How to compute?
- Extended Euclidian algorithm
- Wolfram Alpha J
- Brute force for small values

A 512-bit prime:
9238392041438079003450838646
6608111904604104720064333111
8274222861101608716534554412
4307595017420038487576191853
6796640686377031035140080035
82827766514729

Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that gcd(e, ϕ(n))=1, find m such
that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by

taking eth root of c modulo n
– There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy
(knowing factors means you can compute d = inverse of e mod (p-1)(q-1))
– It may be possible to break RSA without factoring n – but if it is, we don’t know how

CSE 484 - Fall 2024

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less
than n

• Don’t use RSA directly for privacy – output is deterministic!
Need to pre-process input somehow.

• Plain RSA also does not provide integrity
– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt
M⊕ G(r) || r⊕ H(M⊕ G(r))
– r is random and fresh, G and H are hash functions

CSE 484 - Fall 2024

Stepping Back: Asymmetric Crypto

• Last time we saw session key establishment (Diffie-Hellman)
– Can then use shared key for symmetric crypto

• We just saw: public key encryption
– For confidentiality

• Finally, now: digital signatures
– For authenticity

CSE 484 - Fall 2024

Digital Signatures: Basic Idea

CSE 484 - Fall 2024

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m: verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures produced with d

(private key)
• In practice, also need padding & hashing

– Without padding and hashing: Consider multiplying two signatures together
– Standard padding/hashing schemes exist for RSA signatures

CSE 484 - Fall 2024

DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract x (private key)

from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; significant
advantages to using elliptic curve groups instead.

CSE 484 - Fall 2024

Post-Quantum Cryptography

• If quantum computers become a reality
– It becomes much more efficient to break conventional asymmetric

encryption schemes (e.g., factoring becomes “easy”)

• There exists efforts to make quantum-resilient asymmetric
encryption schemes

CSE 484 - Fall 2024

Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: ECB, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, SHA-256)

• Goal: Privacy and Integrity (“authenticated encryption”)

– Encrypt-then-MAC
• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)

CSE 484 - Fall 2024

