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Announcements

• Things due
– Lab 1: today!
– Homework 2: Next Friday
– CSE 584M: Don’t forget about weekly research readings

• Roadmap
– Today: Finish asymmetric crypto
– Friday: Crypto in practice (on the web)
– Next week: Web security
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Reminder: Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a is in Zp* if there is an i such that a=gi mod p
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Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x
– There is no known efficient algorithm for doing this
– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy
• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between                                              
gxy mod p and gr mod p where r is random
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Diffie-Hellman Caveats (1)

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against 
passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

– Eavesdropper can’t tell the difference between the established key and a 
random value

– In practice, often hash gxy mod p, and use the hash as the key
– Can use the new key for symmetric cryptography
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Diffie-Hellman Caveats (2)

• Diffie-Hellman protocol (by itself) does not provide 
authentication (against active attackers)
– Person in the middle attack (aka “man in the middle attack”)
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ge mod p

ga mod p

gb mod p

ge mod p

Alice Eve Bob
gae mod p gbe mod p



Diffie-Hellman Key Exchange Today

• Important Note:
– We have discussed discrete logs modulo integers
– Significant advantages in using elliptic curve groups

• Groups with some similar mathematical properties (i.e., are “groups”) but have better 
security and performance (size) properties

• Today’s de-facto standard
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
– Can then use shared key for symmetric crypto

• Next: public key encryption 
– For confidentiality

• Then: digital signatures
– For authenticity
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair 
(public key PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to 
compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, 
easy to compute plaintext M
– Infeasible to learn anything about M from C without SK
– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the [1,n] 
interval that are relatively prime to n
– Two numbers are relatively prime if their greatest common divisor (gcd) is 1

• Example: 34 (factors: 1, 2, 17, 34) and 35 (1, 5, 7, 35)

– Easy to compute for primes: ϕ(p) = p-1
– Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
– Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

– Compute n=pq and ϕ(n)=(p-1)(q-1)
– Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537
– Compute unique d such that ed ≡ 1 mod ϕ(n)

• Modular inverse: d ≡ e-1 mod ϕ(n)

– Public key = (e,n);  private key = (d,n)
• Encryption of m:  c = me mod n
• Decryption of c:   cd mod n = (me)d mod n = m
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How to compute?
- Extended Euclidian algorithm
- Wolfram Alpha J
- Brute force for small values

A 512-bit prime: 
9238392041438079003450838646
6608111904604104720064333111
8274222861101608716534554412
4307595017420038487576191853
6796640686377031035140080035
82827766514729



Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that gcd(e, ϕ(n))=1, find m such 
that me=c mod n
– In other words, recover m from ciphertext c and public key (n,e) by                           

taking eth root of c modulo n
– There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that 
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy                                                 
(knowing factors means you can compute d = inverse of e mod (p-1)(q-1))
– It may be possible to break RSA without factoring n – but if it is, we don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less 
than n

• Don’t use RSA directly for privacy – output is deterministic!
Need to pre-process input somehow.

• Plain RSA also does not provide integrity
– Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt              
M⊕ G(r) || r⊕ H(M⊕ G(r))
– r is random and fresh, G and H are hash functions
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Stepping Back: Asymmetric Crypto

• Last time we saw session key establishment (Diffie-Hellman)
– Can then use shared key for symmetric crypto

• We just saw: public key encryption 
– For confidentiality

• Finally, now: digital signatures
– For authenticity
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m: verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures produced with d 

(private key)
• In practice, also need padding & hashing

– Without padding and hashing: Consider multiplying two signatures together
– Standard padding/hashing schemes exist for RSA signatures
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DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract x (private key) 

from gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; significant 
advantages to using elliptic curve groups instead.
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Post-Quantum Cryptography

• If quantum computers become a reality
– It becomes much more efficient to break conventional asymmetric 

encryption schemes (e.g., factoring becomes “easy”)

• There exists efforts to make quantum-resilient asymmetric 
encryption schemes
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Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: ECB, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, SHA-256)   

• Goal: Privacy and Integrity (“authenticated encryption”)

– Encrypt-then-MAC
• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)
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