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Announcements

• Lab 1B due Wednesday
• Homework 2 due next Friday
– Individual assignment
– You should be able to do much of it at this point

• Reminder: my OH are on Wednesday this week
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Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit 
values)

• Properties of cryptographically secure hash functions:
– One-wayness: Given a point in the range (that was computed as the hash of a 

random domain element), hard to find a preimage
– Collision Resistance: Hard to find two distinct inputs that map to same output
– Weak Collision Resistance: Given a point in the domain and its hash in the 

range, hard to find a new domain element that maps to the same range 
element
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Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3:  standard released by NIST in August 2015
• MD5 – Don’t use for security!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t use for security!
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!
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SHA-1 Broken in Practice (2017)
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https://shattered.io

https://shattered.io/


Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEYKEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



MAC with SHA3
• SHA3(Key || Message)
• Nice and simple J
• FYI: Previous hash functions couldn’t quite be used in this way              

(see: length extension attack, HMAC construction)

• Why not encryption? (Historical reasons)
– Hashing is faster than block ciphers in software
– Can easily replace one hash function with another
– There used to be US export restrictions on encryption
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Authenticated Encryption

• What if we want both privacy and integrity?
• Natural approach: combine encryption scheme and a MAC.
• But be careful!

– Obvious approach: Encrypt-and-MAC
– Problem: MAC is deterministic! same plaintext à same MAC
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Authenticated Encryption

• Instead: 
Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Encrypt-then-MAC
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Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a shared random 

string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret key sk.  
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Asymmetric Setting
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Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary



Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we 
know it’s REALLY Bob’s??



Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)

CSE 484 - Fall 2024



Next: Session Key Establishment
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Modular Arithmetic

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

– For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …
• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …
• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
–Numbers “wrap around” after they reach p

• g=7 is a “generator” of Z11*
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Diffie-Hellman Protocol (1976) 
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Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a is in Zp* if there is an i such that a=gi mod p
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Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman Computation
• PUBLIC

– p = 11
– g = 2
– (g is a generator for group mod p)

• Alice: x=9, sends 6 (g^x mod p = 2^9 mod 11 = 6)
• Bob: y=4, send 5 (g^y mod p = 2^4 mod 11 = 5)

• A compute:  5^x mod 11 (5^9 mod 11 = 9)
• B compute 6^y mod 11 (6^4 mod 11 = 9)
• Both get 9

• All computations modulo 11
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Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x
– There is no known efficient algorithm for doing this
– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy
• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between                                              
gxy mod p and gr mod p where r is random

CSE 484 - Fall 2024



Diffie-Hellman Caveats (1)

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against 
passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

– Eavesdropper can’t tell the difference between the established key and a 
random value

– In practice, often hash gxy mod p, and use the hash as the key
– Can use the new key for symmetric cryptography
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Diffie-Hellman Caveats (2)

• Diffie-Hellman protocol (by itself) does not provide 
authentication (against active attackers)
– Person in the middle attack (aka “man in the middle attack”)
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Diffie-Hellman Key Exchange Today

• Important Note:
– We have discussed discrete logs modulo integers
– Significant advantages in using elliptic curve groups

• Groups with some similar mathematical properties (i.e., are “groups”) but have better 
security and performance (size) properties

• Today’s de-facto standard
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
– Can then use shared key for symmetric crypto

• Next: public key encryption 
– For confidentiality

• Then: digital signatures
– For authenticity
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