
CSE 484 / CSE M 584:
Finish Hash Functions + MACs;

Start Asymmetric Crypto

Fall 2024

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Lab 1B due Wednesday
• Homework 2 due next Friday
– Individual assignment
– You should be able to do much of it at this point

• Reminder: my OH are on Wednesday this week

CSE 484 - Fall 2024

Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit
values)

• Properties of cryptographically secure hash functions:
– One-wayness: Given a point in the range (that was computed as the hash of a

random domain element), hard to find a preimage
– Collision Resistance: Hard to find two distinct inputs that map to same output
– Weak Collision Resistance: Given a point in the domain and its hash in the

range, hard to find a new domain element that maps to the same range
element

CSE 484 - Fall 2024

Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3: standard released by NIST in August 2015
• MD5 – Don’t use for security!
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t use for security!
– 160-bit output
– US government (NIST) standard as of 1993-95
– Theoretically broken 2005; practical attack 2017!

CSE 484 - Fall 2024

SHA-1 Broken in Practice (2017)

CSE 484 - Fall 2024

https://shattered.io

https://shattered.io/

Recall: Achieving Integrity

CSE 484 - Fall 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEYKEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

MAC with SHA3
• SHA3(Key || Message)
• Nice and simple J
• FYI: Previous hash functions couldn’t quite be used in this way

(see: length extension attack, HMAC construction)

• Why not encryption? (Historical reasons)
– Hashing is faster than block ciphers in software
– Can easily replace one hash function with another
– There used to be US export restrictions on encryption

CSE 484 - Fall 2024

Authenticated Encryption

• What if we want both privacy and integrity?
• Natural approach: combine encryption scheme and a MAC.
• But be careful!

– Obvious approach: Encrypt-and-MAC
– Problem: MAC is deterministic! same plaintext à same MAC

CSE 484 - Fall 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

Candidate BCandidate A Candidate ACandidate A Candidate A

MACKm MACKm

T1 T3

Authenticated Encryption

• Instead:
Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

CSE 484 - Fall 2024

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Flavors of Cryptography

• Symmetric cryptography
– Both communicating parties have access to a shared random

string K, called the key.

• Asymmetric cryptography
– Each party creates a public key pk and a secret key sk.

CSE 484 - Fall 2024

Asymmetric Setting

CSE 484 - Fall 2024

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public Key Crypto: Basic Problem

CSE 484 - Fall 2024

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we
know it’s REALLY Bob’s??

Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)

CSE 484 - Fall 2024

Next: Session Key Establishment

CSE 484 - Fall 2024

Modular Arithmetic

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

– For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …
• Produces cyclic group {10, 1} (order=2)

– For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …
• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
–Numbers “wrap around” after they reach p

• g=7 is a “generator” of Z11*

CSE 484 - Fall 2024

Diffie-Hellman Protocol (1976)

CSE 484 - Fall 2024

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets
• Public info: p and g
– p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a is in Zp* if there is an i such that a=gi mod p

CSE 484 - Fall 2024

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Example Diffie Hellman Computation
• PUBLIC

– p = 11
– g = 2
– (g is a generator for group mod p)

• Alice: x=9, sends 6 (g^x mod p = 2^9 mod 11 = 6)
• Bob: y=4, send 5 (g^y mod p = 2^4 mod 11 = 5)

• A compute: 5^x mod 11 (5^9 mod 11 = 9)
• B compute 6^y mod 11 (6^4 mod 11 = 9)
• Both get 9

• All computations modulo 11

CSE 484 - Fall 2024

Diffie-Hellman: Conceptually

CSE 484 - Fall 2024

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:
given gx mod p, it’s hard to extract x
– There is no known efficient algorithm for doing this
– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy
• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between
gxy mod p and gr mod p where r is random

CSE 484 - Fall 2024

Diffie-Hellman Caveats (1)

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against
passive attackers
– Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

– Eavesdropper can’t tell the difference between the established key and a
random value

– In practice, often hash gxy mod p, and use the hash as the key
– Can use the new key for symmetric cryptography

CSE 484 - Fall 2024

Diffie-Hellman Caveats (2)

• Diffie-Hellman protocol (by itself) does not provide
authentication (against active attackers)
– Person in the middle attack (aka “man in the middle attack”)

CSE 484 - Fall 2024

Diffie-Hellman Key Exchange Today

• Important Note:
– We have discussed discrete logs modulo integers
– Significant advantages in using elliptic curve groups

• Groups with some similar mathematical properties (i.e., are “groups”) but have better
security and performance (size) properties

• Today’s de-facto standard

CSE 484 - Fall 2024

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
– Can then use shared key for symmetric crypto

• Next: public key encryption
– For confidentiality

• Then: digital signatures
– For authenticity

CSE 484 - Fall 2024

