
CSE 484 / CSE M 584: 
Software Security

Winter 2023

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan 
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...



Announcements

• Lab 1
– Part 1a due Friday

• Homework 1
– Also Friday

CSE 484  - Winter 2023



Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
– Put malicious code at a predictable location in memory, usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt or check integrity of pointers
4. Address space layout randomization
5. Code analysis
6. …

CSE 484  - Winter 2023



Defense: Run-Time Checking: StackGuard

CSE 484  - Winter 2023

• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary



Defense: Run-Time Checking: StackGuard

CSE 484  - Winter 2023

• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary



StackGuard Implementation

• StackGuard requires code recompilation
• Checking canary integrity prior to every function return causes a 

performance penalty
– For example, 8% for Apache Web server at one point in time

CSE 484  - Winter 2023



Defeating StackGuard

CSE 484  - Winter 2023

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is 

sufficient
• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)

– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy 
BadPointer here



ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
– Base of executable region
– Position of stack
– Position of heap
– Position of libraries

• Introduced by Linux PaX project in 2001
• Adopted by OpenBSD in 2003
• Adopted by Linux in 2005

CSE 484  - Winter 2023



ASLR: Address Space Randomization

• Deployment (examples)
– Linux kernel since 2.6.12 (2005+)
– Android 4.0+
– iOS 4.3+ ; OS X 10.5+
– Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or 
addresses)

• ASLR more effective on 64-bit architectures

CSE 484  - Winter 2023



Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for 
adversary’s code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out 
memory on the fly
– Disclosing a single address can reveal the location of all code 

within a library, depending on the ASLR implementation

CSE 484  - Winter 2023



Defense: Shadow Stacks
• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
– A hidden stack

• On function call/return
– Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at function 
return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO 5000)

CSE 484  - Winter 2023



Challenges With Shadow Stacks
• Where do we put the shadow stack?

– Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t 
influence control flow.)

CSE 484  - Winter 2023



Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues )

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”

CSE 484  - Winter 2023



Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484  - Winter 2023



Other Common Software Security Issues…

CSE 484  - Winter 2023



Another Type of Vulnerability

• Consider this code:

CSE 484  - Winter 2023

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;



Another Example

CSE 484  - Winter 2023

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Canvas -> Quizzes -> January 18

http://www-inst.eecs.berkeley.edu/%7Ecs161/fa05/Notes/implflaws.pdf


Implicit Cast

• Consider this code:

CSE 484  - Winter 2023

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may 
copy huge amounts of 

input into buf.



Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.

CSE 484  - Winter 2023

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/%7Ecs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission
• What can go wrong?

CSE 484  - Winter 2023

if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal:  Write to file only with permission
• Attacker (in another program) can change meaning 

of “file” between access and open:   
symlink("/etc/passwd", "file");

CSE 484  - Winter 2023

if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long

CSE 484  - Winter 2023



Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

CSE 484  - Winter 2023

PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Attacker Model

• Attacker can guess CandidatePwds through some standard interface
• Naive:  Try all 2568 = 18,446,744,073,709,551,616 possibilities
• Is it possible to derive password more quickly?

CSE 484  - Winter 2023

PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs
– No format string vulnerabilities
– Good choice of randomness
– Good design

• The software may still be vulnerable to timing attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against
• Even possible over a network

– “Remote timing attacks are possible” (Brumley & Boneh, 2005)

CSE 484  - Winter 2023



Other Examples

• Plenty of other examples of timings attacks
– Timing cache misses

• Extract cryptographic keys…
• Recent Spectre/Meltdown attacks

– Duration of a rendering operation
• Extract webpage information

– Duration of a failed decryption attempt
• Different failures mean different thing (e.g., Padding oracles)

• Plenty of other side channels... We‘ll return to this later in the course

CSE 484  - Winter 2023



Software Security:
So, what do we do?

CSE 484  - Winter 2023



General Principles

• Check inputs
• Check all return values
• Least privilege
• Securely clear memory (passwords, keys, etc.)
• Failsafe defaults
• Defense in depth

– Also: prevent, detect, respond

CSE 484  - Winter 2023



General Principles

• Reduce size of trusted computing base (TCB)
• Simplicity, modularity

– But: Be careful at interface boundaries!

• Minimize attack surface
• Use vetted components
• Security by design

– But: tension between security and other goals

• Open design? Open source? Closed source?
– Different perspectives

CSE 484  - Winter 2023



Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security problem in a real 
system?

• Say
– A commercial website? 
– UW grade database?
– Boeing 787?
– TSA procedures?

CSE 484  - Winter 2023

What would you do? What ethical questions come up?



Vulnerability Analysis and Disclosure

• Suppose companies A, B, and C all have a vulnerability, but have not made the 
existence of that vulnerability public

• Company A has a software update prepared and ready to go that, once shipped, 
will fix the vulnerability; but B and C are still working on developing a patch for 
the vulnerability

• Company A learns that attackers are exploiting this vulnerability in the wild 
• Should Company A release their patch, even if doing so means that the vulnerability 

now becomes public and other actors can start exploiting Companies B and C? 
• Or should Company A wait until Companies B and C have patches?

CSE 484  - Winter 2023


	CSE 484 / CSE M 584: �Software Security
	Announcements
	Buffer Overflow: Causes and Cures
	Defense: Run-Time Checking: StackGuard
	Defense: Run-Time Checking: StackGuard
	StackGuard Implementation
	Defeating StackGuard
	ASLR: Address Space Randomization
	ASLR: Address Space Randomization
	Attacking ASLR
	Defense: Shadow Stacks
	Challenges With Shadow Stacks
	Other Big Classes of Defenses
	Fuzz Testing
	Other Common Software Security Issues…
	Another Type of Vulnerability
	Another Example
	Implicit Cast
	Integer Overflow
	Another Type of Vulnerability
	TOCTOU (Race Condition)
	Password Checker
	Password Checker
	Attacker Model
	Timing Attacks
	Other Examples
	Software Security:�So, what do we do?
	General Principles
	General Principles
	Vulnerability Analysis and Disclosure
	Vulnerability Analysis and Disclosure

