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Announcements

• Lab 1
– Part 1a due Friday

• Homework 1
– Also Friday
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Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
– Put malicious code at a predictable location in memory, usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt or check integrity of pointers
4. Address space layout randomization
5. Code analysis
6. …
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Defense: Run-Time Checking: StackGuard
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• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary
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Defense: Run-Time Checking: StackGuard
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• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”
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StackGuard Implementation

• StackGuard requires code recompilation
• Checking canary integrity prior to every function return causes a 

performance penalty
– For example, 8% for Apache Web server at one point in time
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Defeating StackGuard
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• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is 

sufficient
• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)

– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy 
BadPointer here



ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
– Base of executable region
– Position of stack
– Position of heap
– Position of libraries

• Introduced by Linux PaX project in 2001
• Adopted by OpenBSD in 2003
• Adopted by Linux in 2005
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ASLR: Address Space Randomization

• Deployment (examples)
– Linux kernel since 2.6.12 (2005+)
– Android 4.0+
– iOS 4.3+ ; OS X 10.5+
– Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or 
addresses)

• ASLR more effective on 64-bit architectures
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Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for 
adversary’s code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out 
memory on the fly
– Disclosing a single address can reveal the location of all code 

within a library, depending on the ASLR implementation
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Defense: Shadow Stacks
• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
– A hidden stack

• On function call/return
– Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at function 
return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO 5000)
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Challenges With Shadow Stacks
• Where do we put the shadow stack?

– Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t 
influence control flow.)
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Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues )

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”
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Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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Other Common Software Security Issues…
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Another Type of Vulnerability

• Consider this code:
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char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;



Another Example
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size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Canvas -> Quizzes -> January 18

http://www-inst.eecs.berkeley.edu/%7Ecs161/fa05/Notes/implflaws.pdf


Implicit Cast

• Consider this code:
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char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may 
copy huge amounts of 

input into buf.



Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.
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size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/%7Ecs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission
• What can go wrong?
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if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal:  Write to file only with permission
• Attacker (in another program) can change meaning 

of “file” between access and open:   
symlink("/etc/passwd", "file");
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if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long
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Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Attacker Model

• Attacker can guess CandidatePwds through some standard interface
• Naive:  Try all 2568 = 18,446,744,073,709,551,616 possibilities
• Is it possible to derive password more quickly?
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs
– No format string vulnerabilities
– Good choice of randomness
– Good design

• The software may still be vulnerable to timing attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against
• Even possible over a network

– “Remote timing attacks are possible” (Brumley & Boneh, 2005)
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Other Examples

• Plenty of other examples of timings attacks
– Timing cache misses

• Extract cryptographic keys…
• Recent Spectre/Meltdown attacks

– Duration of a rendering operation
• Extract webpage information

– Duration of a failed decryption attempt
• Different failures mean different thing (e.g., Padding oracles)

• Plenty of other side channels... We‘ll return to this later in the course
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Software Security:
So, what do we do?
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General Principles

• Check inputs
• Check all return values
• Least privilege
• Securely clear memory (passwords, keys, etc.)
• Failsafe defaults
• Defense in depth

– Also: prevent, detect, respond
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General Principles

• Reduce size of trusted computing base (TCB)
• Simplicity, modularity

– But: Be careful at interface boundaries!

• Minimize attack surface
• Use vetted components
• Security by design

– But: tension between security and other goals

• Open design? Open source? Closed source?
– Different perspectives
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Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security problem in a real 
system?

• Say
– A commercial website? 
– UW grade database?
– Boeing 787?
– TSA procedures?
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What would you do? What ethical questions come up?



Vulnerability Analysis and Disclosure

• Suppose companies A, B, and C all have a vulnerability, but have not made the 
existence of that vulnerability public

• Company A has a software update prepared and ready to go that, once shipped, 
will fix the vulnerability; but B and C are still working on developing a patch for 
the vulnerability

• Company A learns that attackers are exploiting this vulnerability in the wild 
• Should Company A release their patch, even if doing so means that the vulnerability 

now becomes public and other actors can start exploiting Companies B and C? 
• Or should Company A wait until Companies B and C have patches?
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