
CSE 484 / CSE M 584:
Software Security

Winter 2023

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Lab 1:
– Start forming groups today
– Lab 1 will be covered in quiz section tomorrow
– Given all the details with Lab 1, important to attend quiz section

tomorrow

CSE 484 / CSE M 584 - Winter 2023

SOFTWARE SECURITY

CSE 484 - Winter 2023 3

Bugs, Vulnerabilities, and Exploits

• Bug
– Not working quite right

• Vulnerability
– A malfunction that can be used for an adversary’s goals

• Exploit
– The mechanical set of operations to make use of a vulnerability

CSE 484 - Winter 2023 4

Adversarial Failures

• Software bugs are bad
– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit
them!
– Intelligent adversaries: Force bugs into “worst possible”

conditions/states
– Intelligent adversaries: Pick their targets

CSE 484 - Winter 2023 5

Memory Corruption Bugs

• Buffer overflows bugs: Big class of bugs
– Normal conditions: Can sometimes cause systems to fail
– Adversarial conditions: Attacker able to violate security of your system

(control, obtain private information, ...)

• Stack, Heap both possibilities

CSE 484 - Winter 2023 7

BUFFER OVERFLOWS

CSE 484 - Winter 2023 8

A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist
– Convicted under Computer Fraud and Abuse Act,

• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly
measure the size of the Internet

• Due to a coding error, it created new copies as fast as it could
and overloaded infected machines

• $10-100M worth of damage (in 1988)

CSE 484 - Winter 2023 9

Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow
attack against a vulnerable version of fingerd on VAX systems
– By sending special string to finger daemon, worm caused it to execute code

creating a new worm copy

Buffer overflows remain a common source of
vulnerabilities and exploits today!
(Especially in embedded systems.)

CSE 484 - Winter 2023 10

Aside: Famous Internet Worms

• Morris worm (1988): overflow in fingerd
– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server
– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS
– Around 500,000 machines infected

CSE 484 - Winter 2023 11

… And More

• Conficker (2008-09): overflow in Windows RPC
– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same Windows RPC
overflow as Conficker
– Windows print spooler service
– Windows LNK shortcut display
– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as Stuxnet
– Targeted cyperespionage virus

• These days, worms are uncommon, at least on non-embedded systems

CSE 484 - Winter 2023 12

… And More

• Embedded systems
– E.g., UW automotive security work

• Formative and foundational for software security

CSE 484 - Winter 2023 13

Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory
(stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-allocated buffer.
– The developer forgets to check that the size of the input isn’t larger than the

size of the buffer.
– Uh oh.

• “Normal” bad input: crash
• “Adversarial” bad input : take control of execution

CSE 484 - Winter 2023 14

Stack Buffers

CSE 484 - Winter 2023 15

• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• No bounds checking on strcpy()
• If str is longer than 126 bytes

– Program may crash
– Attacker may change program behavior

buf uh oh!

Example: Changing Flags

CSE 484 - Winter 2023 16

• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;
char buf[126];
...
strcpy(buf,str);
...

}

• Authenticated variable non-zero when user has extra privileges
• Morris worm also overflowed a buffer to overwrite an authenticated

flag in fingerd

buf authenticated11 (:-) !)

Memory Layout

• Text region: Executable code of the program
• Heap: Dynamically allocated data
• Stack: Local variables, function return addresses; grows and shrinks

as functions are called and return

CSE 484 - Winter 2023 17

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• What happens on the stack when this function is called?

CSE 484 - Winter 2023 18

Caller’s frame

Addr 0xFF...F

Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is
pushed onto the stack.

CSE 484 - Winter 2023 19

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite
adjacent stack locations.

CSE 484 - Winter 2023 20

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Executing Attack Code

• Suppose buffer contains attacker-created string
– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be
executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

CSE 484 - Winter 2023 21

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F
Attacker puts actual assembly instructions into their
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the
location where the system expects to find return address

Caller’s framestr

Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of
attack code in the RET position
– The value in the RET position must point to the beginning of attack

assembly code in the buffer
• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer
will be when the function is called

CSE 484 - Winter 2023 22

Problem: No Bounds Checking

• strcpy does not check input size
– strcpy(buf, str) simply copies memory contents into buf starting from *str

until “\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe
– strcpy(char *dest, const char *src)
– strcat(char *dest, const char *src)
– gets(char *s)
– scanf(const char *format, …)
– printf(const char *format, …)

CSE 484 - Winter 2023 23

Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– For strncpy (unlike strcpy), no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

CSE 484 - Winter 2023 24

Copies username (“user”) into buffer
(“record”), then appends “:” and hashed
password (“cpw”)

In-Class Activity

Canvas -> Quizzes -> January 11

(This is the first one that will be graded.
Note that you have 5 “freebies” for the quarter.)

CSE 484 - Winter 2023 25

Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

CSE 484 - Winter 2023 26

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to
previous stack frame
– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 - Winter 2023 27

In-Class Activity

Canvas -> Quizzes -> January 11

CSE 484 - Winter 2023 28

Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 - Winter 2023 29

In-Class Activity

Canvas -> Quizzes -> January 11

CSE 484 - Winter 2023 30

Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 - Winter 2023 31

This will copy 513
characters into
buffer. Oops!

• 1-byte overflow: can’t change RET, but can change pointer to
previous stack frame…

Frame Pointer Overflow

CSE 484 - Winter 2023 32

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP ATTACK CODE

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is
stored in memory location P, then one can call F as (*P)(…)

CSE 484 - Winter 2023 33

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)

Other Overflow Targets

• Format strings in C
– We’ll walk through this later

• Heap management structures used by malloc()
– More details in section
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 

CSE 484 - Winter 2023 34

	CSE 484 / CSE M 584: �Software Security
	Announcements
	SOFTWARE SECURITY
	Bugs, Vulnerabilities, and Exploits
	Adversarial Failures
	Memory Corruption Bugs
	Buffer Overflows
	A Bit of History: Morris Worm
	Morris Worm and Buffer Overflow
	Aside: Famous Internet Worms
	… And More
	… And More
	Attacks on Memory Buffers
	Stack Buffers
	Example: Changing Flags
	Memory Layout
	Stack Buffers
	Stack Buffers
	What if Buffer is Overstuffed?
	Executing Attack Code
	Buffer Overflows Can Be Tricky…
	Problem: No Bounds Checking
	Does Bounds Checking Help?
	In-Class Activity
	Misuse of strncpy in htpasswd “Fix”
	What About This?
	In-Class Activity
	Off-by-One Overflow
	In-Class Activity
	Off-by-One Overflow
	Frame Pointer Overflow
	Another Variant:�Function Pointer Overflow
	Other Overflow Targets

