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Announcements

• Lab 1:
– Start forming groups today
– Lab 1 will be covered in quiz section tomorrow
– Given all the details with Lab 1, important to attend quiz section

tomorrow
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SOFTWARE SECURITY
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Bugs, Vulnerabilities, and Exploits

• Bug
– Not working quite right

• Vulnerability
– A malfunction that can be used for an adversary’s goals

• Exploit
– The mechanical set of operations to make use of a vulnerability
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Adversarial Failures

• Software bugs are bad
– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit
them!
– Intelligent adversaries:  Force bugs into “worst possible” 

conditions/states
– Intelligent adversaries:  Pick their targets
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Memory Corruption Bugs

• Buffer overflows bugs:  Big class of bugs
– Normal conditions:  Can sometimes cause systems to fail
– Adversarial conditions:  Attacker able to violate security of your system 

(control, obtain private information, ...)

• Stack, Heap both possibilities

CSE 484 - Winter 2023 7



BUFFER OVERFLOWS

CSE 484 - Winter 2023 8



A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist
– Convicted under Computer Fraud and Abuse Act, 

• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly 
measure the size of the Internet

• Due to a coding error, it created new copies as fast as it could 
and overloaded infected machines

• $10-100M worth of damage (in 1988)
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Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow 
attack against a vulnerable version of fingerd on VAX systems
– By sending special string to finger daemon, worm caused it to execute code 

creating a new worm copy

Buffer overflows remain a common source of                         
vulnerabilities and exploits today! 
(Especially in embedded systems.)
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Aside: Famous Internet Worms

• Morris worm (1988): overflow in fingerd
– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server
– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS
– Around 500,000 machines infected
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… And More

• Conficker (2008-09): overflow in Windows RPC
– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same Windows RPC 
overflow as Conficker
– Windows print spooler service
– Windows LNK shortcut display
– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as Stuxnet
– Targeted cyperespionage virus

• These days, worms are uncommon, at least on non-embedded systems
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… And More

• Embedded systems
– E.g., UW automotive security work

• Formative and foundational for software security
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Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory 
(stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-allocated buffer.
– The developer forgets to check that the size of the input isn’t larger than the 

size of the buffer.
– Uh oh.

• “Normal” bad input: crash
• “Adversarial” bad input : take control of execution
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Stack Buffers

CSE 484 - Winter 2023 15

• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• No bounds checking on strcpy()
• If str is longer than 126 bytes

– Program may crash
– Attacker may change program behavior

buf uh oh!



Example: Changing Flags

CSE 484 - Winter 2023 16

• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;
char buf[126];
...
strcpy(buf,str);
...

}

• Authenticated variable non-zero when user has extra privileges
• Morris worm also overflowed a buffer to overwrite an authenticated 

flag in fingerd

buf authenticated11 ( :-) ! )



Memory Layout

• Text region: Executable code of the program
• Heap: Dynamically allocated data
• Stack: Local variables, function return addresses; grows and shrinks 

as functions are called and return
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Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• What happens on the stack when this function is called?
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Caller’s frame

Addr 0xFF...F



Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is 
pushed onto the stack.
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Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations.
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strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



Executing Attack Code

• Suppose buffer contains attacker-created string
– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be 
executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root
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ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F
Attacker puts actual assembly instructions into their
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the 
location where the system expects to find return address

Caller’s framestr



Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of 
attack code in the RET position
– The value in the RET position must point to the beginning of attack 

assembly code in the buffer
• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer 
will be when the function is called
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Problem: No Bounds Checking

• strcpy does not check input size
– strcpy(buf, str) simply copies memory contents into buf starting from *str

until “\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe
– strcpy(char *dest, const char *src)
– strcat(char *dest, const char *src)
– gets(char *s)
– scanf(const char *format, …)
– printf(const char *format, …) 
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Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– For strncpy (unlike strcpy), no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)   
strncat(record,cpw,MAX_STRING_LEN-1);
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Copies username (“user”) into buffer 
(“record”), then appends “:” and hashed 
password (“cpw”)



In-Class Activity

Canvas -> Quizzes -> January 11

(This is the first one that will be graded. 
Note that you have 5 “freebies” for the quarter.)
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Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)   
strncat(record,cpw,MAX_STRING_LEN-1);
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MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer



What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {
if (argc==2) 

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to 
previous stack frame
– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!
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In-Class Activity

Canvas -> Quizzes -> January 11
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Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {
if (argc==2) 

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!
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In-Class Activity

Canvas -> Quizzes -> January 11
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Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {
if (argc==2) 

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!
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This will copy 513
characters into
buffer. Oops!

• 1-byte overflow: can’t change RET, but can change pointer to 
previous stack frame…



Frame Pointer Overflow
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP ATTACK CODE



Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is 
stored in memory location P, then one can call F as (*P)(…)
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attack code

Buffer with attacker-supplied 
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)



Other Overflow Targets

• Format strings in C
– We’ll walk through this later

• Heap management structures used by malloc() 
– More details in section
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 
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