
CSE 484 / CSE M 584:
Web Security

Winter 2023

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements / Plan

• Monday (2/20): No class
• Wednesday (2/22): Update: Watch 2 Enigma talks

– 2022 and earlier online:
https://www.usenix.org/conference/enigma2022/program

– Each ~20 minutes long
– Reason: find two talks that help you with your project or are of interest

to you for any other reasons (and Wednesday originally had Zoom guest
lecture than was going)

– Fill out “in class quiz” while/after watching

• Friday (2/24): Guest Lecture: Alex Gantman (Qualcomm) (On
Zoom)

• Project submissions today; Yoshi will review over weekend /
before Wednesday

CSE 484 / CSE M 584 - Winter 2023

https://www.usenix.org/conference/enigma2022/program

Review: Another Common Web App
Vulnerability:
SQL Injection

CSE 484 - Winter 2023

Review: Typical Login Prompt

CSE 484 - Winter 2023

Review: Typical Query Generation Code

$selecteduser = $_GET['user'];

$sql = "SELECT Username, Key FROM Key " .

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes the meaning of
the query?

CSE 484 - Winter 2023

Review: User Input Becomes Part of Query

CSE 484 - Winter 2023

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

Review: Normal Login

CSE 484 - Winter 2023

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘alice’

Review: Malicious User Input

CSE 484 - Winter 2023

Review: SQL Injection Attack

CSE 484 - Winter 2023

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

Preventing SQL Injection

• Validate all inputs

– Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form
becoming part of the query code
– E.g.: escape(O’Connor) = O\’Connor

– Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything
accidentally not checked / escaped?

CSE 484 - Winter 2023

Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)

CSE 484 - Winter 2023

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Core Issue: Data-As-Code

• XSS

• SQL Injection

• (Like buffer overflows)

CSE 484 - Winter 2023

Cross-Site Request Forgery
(CSRF/XSRF)

CSE 484 - Winter 2023

Cookie-Based Authentication Review

CSE 484 - Winter 2023

ServerBrowser

Same Origin Policy Review

• SOP prevents cross-origin requests, DOM accesses, etc.

• But: Active content (scripts) can send anywhere!

– For example, can submit a POST request

– Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin

– … but you can do a lot with just sending!

CSE 484 - Winter 2023

Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off

– Session cookie remains in browser state

• User then visits a malicious website containing
<form name=BillPayForm

action=http://bank.com/BillPay.php>

<input name=recipient value=attacker> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side
effects can happen

CSE 484 - Winter 2023

Cookies in Forged Requests

CSE 484 - Winter 2023

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E

Sending a Cross-Domain POST

<form method="POST" action=http://othersite.com/action >

...

</form>

<script>document.forms[0].submit()</script>

• Hidden iframe can do this in the background

• User visits a malicious page, browser submits form on behalf of user
– Hijack any ongoing session (if no protection)

• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click purchase

– Reprogram the user’s home router

– Many other attacks possible

CSE 484 - Winter 2023

 submit post

Impact

• Hijack any ongoing session (if no protection)

– Netflix: change account settings, Gmail: steal contacts, Amazon:
one-click purchase

• Reprogram the user’s home router

• Login to the attacker’s account

– Why might an attacker want this?

CSE 484 - Winter 2023

XSRF True Story

CSE 484 - Winter 2023

[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

XSRF (aka CSRF): Summary

CSE 484 - Winter 2023

Attack server

Server victim

User victim

1

2

4

Q: how long do you stay logged on to Gmail? Financial sites?

Broader View of XSRF

• Abuse of cross-site data export

– SOP does not control data export

– Malicious webpage can initiates requests from the user’s browser
to an honest server

– Server thinks requests are part of the established session between
the browser and the server (automatically sends cookies)

CSE 484 - Winter 2023

Canvas Activity

How might a web application defend itself against CSRF?

CSE 484 - Winter 2023

XSRF Defenses

CSE 484 - Winter 2023

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required

CSE 484 - Winter 2023

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:

✓

?

Why Not Always Strict Checking?

• Why might the referer header be suppressed?
– Stripped by the organization’s network filter

– Stripped by the local machine

– Stripped by the browser for HTTPS → HTTP transitions

– User preference in browser

– Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF
defenses today

CSE 484 - Winter 2023

Better Idea: Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
– Token often based on user’s session ID

– Server must verify correctness of token before executing sensitive
operations

• Why does this work?
– Same-origin policy: attacker can’t read token out of legitimate

forms loaded in user’s browser!

– So: can’t create fake forms with correct token!

CSE 484 - Winter 2023

<input type=hidden value=23a3af01b>

Stepping Back: Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content presented by visited

websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …

– Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

– Many potential bugs: XSS, XSRF, SQL injection

CSE 484 - Winter 2023

Review: Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→Same Origin Policy

CSE 484 - Winter 2023

Browser Sandbox

Goals: (1) Protect local system from web attacker;
(2) Protect websites from each other

– E.g., safely execute JavaScript provided by a website

– No direct file access, limited access to OS, network, browser data, content
from other websites

– Tabs (new: also iframes!) in their own processes

– Implementation is browser and OS specific*
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE 484 - Winter 2023

From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Cross-Origin Communication

• Sometimes you want to do it…

• Cross-origin Resource Sharing (CORS)

– Access-Control-Allow-Origin: <list of domains>

• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication

– HTML5 postMessage between frames

• Unfortunately, many bugs in how frames check sender’s origin

CSE 484 - Winter 2023

What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader

• Goal: enable functionality that requires transcending
the browser sandbox

• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

CSE 484 - Winter 2023

Goodbye Flash

CSE 484 - Winter 2023

“As of mid-October 2020, users started being prompted by Adobe to
uninstall Flash Player on their machines since Flash-based content will
be blocked from running in Adobe Flash Player after the EOL Date.”
https://www.adobe.com/products/flashplayer/end-of-life.html

https://www.adobe.com/products/flashplayer/end-of-life.html

What about Browser Extensions?

• Most things you use today are probably extensions

• Examples: AdBlock, Ghostery, Mailvelope

• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to protect from
malicious websites

– Privilege separation: extensions consist of multiple components with well-
defined communication

– Least privilege: extensions request permissions

CSE 484 - Winter 2023

What about Browser Extensions?

• But be wary of malicious extensions: not subject to the same-origin
policy – can inject code into any webpage!

• Today: Extensions in flux – new “Manifest v3” specification from
Google, trying to make things safer.

CSE 484 - Winter 2023

Web Security Summary

• Browser security model

– Browser sandbox: isolate web from local machine

– Same origin policy: isolate web content from different domains

– Also: Isolation for plugins and extensions

• Web application security

– How (not) to build a secure website

CSE 484 - Winter 2023

