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Announcements / Plan

• Monday (2/20): No class
• Wednesday (2/22): Update: Watch 2 Enigma talks

– 2022 and earlier online: 
https://www.usenix.org/conference/enigma2022/program

– Each ~20 minutes long
– Reason: find two talks that help you with your project or are of interest 

to you for any other reasons (and Wednesday originally had Zoom guest 
lecture than was going)

– Fill out “in class quiz” while/after watching

• Friday (2/24): Guest Lecture: Alex Gantman (Qualcomm) (On 
Zoom)

• Project submissions today; Yoshi will review over weekend / 
before Wednesday
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https://www.usenix.org/conference/enigma2022/program


Review: Another Common Web App 
Vulnerability:
SQL Injection
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Review: Typical Login Prompt
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Review: Typical Query Generation Code

$selecteduser = $_GET['user']; 

$sql = "SELECT Username, Key FROM Key " . 

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql); 

What if ‘user’ is a malicious string that changes the meaning of 
the query?
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Review: User Input Becomes Part of Query
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname
IS ‘$user’



Review: Normal Login
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘alice’



Review: Malicious User Input
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Review: SQL Injection Attack
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user 
accounts



Preventing SQL Injection

• Validate all inputs

– Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form 
becoming part of the query code
– E.g.: escape(O’Connor) = O\’Connor

– Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything 
accidentally not checked / escaped?
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Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)
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http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html


Core Issue: Data-As-Code

• XSS

• SQL Injection

• (Like buffer overflows)
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Cross-Site Request Forgery
(CSRF/XSRF)
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Cookie-Based Authentication Review
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ServerBrowser



Same Origin Policy Review

• SOP prevents cross-origin requests, DOM accesses, etc.

• But: Active content (scripts) can send anywhere!

– For example, can submit a POST request

– Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin

– … but you can do a lot with just sending!
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Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off

– Session cookie remains in browser state

• User then visits a malicious website containing
<form  name=BillPayForm

action=http://bank.com/BillPay.php>

<input  name=recipient value=attacker> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!

• Lesson: cookie authentication is not sufficient when side 
effects can happen
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Cookies in Forged Requests
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User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E



Sending a Cross-Domain POST

<form method="POST" action=http://othersite.com/action >

...

</form>

<script>document.forms[0].submit()</script>

• Hidden iframe can do this in the background

• User visits a malicious page, browser submits form on behalf of user
– Hijack any ongoing session (if no protection)

• Netflix: change account settings, Gmail: steal contacts, Amazon: one-click purchase

– Reprogram the user’s home router

– Many other attacks possible
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Impact

• Hijack any ongoing session (if no protection)

– Netflix: change account settings, Gmail: steal contacts, Amazon: 
one-click purchase

• Reprogram the user’s home router

• Login to the attacker’s account

– Why might an attacker want this?
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XSRF True Story
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[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com

Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

Bernanke Really an Alien?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications 



XSRF (aka CSRF): Summary
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Attack server

Server victim 

User victim

1

2

4

Q: how long do you stay logged on to Gmail?  Financial sites?



Broader View of XSRF

• Abuse of cross-site data export

– SOP does not control data export

– Malicious webpage can initiates requests from the user’s browser 
to an honest server

– Server thinks requests are part of the established session between 
the browser and the server (automatically sends cookies)
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Canvas Activity

How might a web application defend itself against CSRF?
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XSRF Defenses
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• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php



Referer Validation

• Lenient referer checking – header is optional

• Strict referer checking – header is required
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Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: 

✓



?



Why Not Always Strict Checking?

• Why might the referer header be suppressed?
– Stripped by the organization’s network filter

– Stripped by the local machine

– Stripped by the browser for HTTPS → HTTP transitions

– User preference in browser

– Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF 
defenses today
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Better Idea: Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input in forms
– Token often based on user’s session ID

– Server must verify correctness of token before executing sensitive 
operations

• Why does this work?
– Same-origin policy: attacker can’t read token out of legitimate 

forms loaded in user’s browser! 

– So: can’t create fake forms with correct token!
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<input type=hidden value=23a3af01b>



Stepping Back: Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content presented by visited 

websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …

– Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

– Many potential bugs: XSS, XSRF, SQL injection
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Review: Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→Same Origin Policy

CSE 484 - Winter 2023



Browser Sandbox

Goals: (1) Protect local system from web attacker; 
(2) Protect websites from each other

– E.g., safely execute JavaScript provided by a website

– No direct file access, limited access to OS, network, browser data, content 
from other websites

– Tabs (new: also iframes!) in their own processes

– Implementation is browser and OS specific* 
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md


Cross-Origin Communication

• Sometimes you want to do it…

• Cross-origin Resource Sharing (CORS)

– Access-Control-Allow-Origin: <list of domains>

• Unfortunately, often:

Access-Control-Allow-Origin: *

• Cross-origin client side communication

– HTML5 postMessage between frames

• Unfortunately, many bugs in how frames check sender’s origin
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What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader

• Goal: enable functionality that requires transcending 
the browser sandbox

• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for 
plugins decreasing (due to HTML5 and extensions)
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Goodbye Flash
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“As of mid-October 2020, users started being prompted by Adobe to 
uninstall Flash Player on their machines since Flash-based content will 
be blocked from running in Adobe Flash Player after the EOL Date.”
https://www.adobe.com/products/flashplayer/end-of-life.html

https://www.adobe.com/products/flashplayer/end-of-life.html


What about Browser Extensions?

• Most things you use today are probably extensions

• Examples: AdBlock, Ghostery, Mailvelope

• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to protect from 
malicious websites

– Privilege separation: extensions consist of multiple components with well-
defined communication

– Least privilege: extensions request permissions
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What about Browser Extensions?

• But be wary of malicious extensions: not subject to the same-origin 
policy – can inject code into any webpage!

• Today: Extensions in flux – new “Manifest v3” specification from 
Google, trying to make things safer.
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Web Security Summary

• Browser security model

– Browser sandbox: isolate web from local machine

– Same origin policy: isolate web content from different domains

– Also: Isolation for plugins and extensions

• Web application security

– How (not) to build a secure website
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