CSE 484 [CSE M 584:
Applied Cryptography

Winter 2023

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements / Plan

* Friday (2/3) through Wednesday (2/8): Applied
Crypto

* Friday (2/10): Guest Lecture: Prof. Elissa Redmiles
(MPI)

* Wednesday (2/22): At most Zoom

* Friday (2/24): Guest Lecture: Alex Gantman
(Qualcomm) (On Zoom)

CSE 484 | CSE M 584 - Winter 2023

Review: Now: Achieving Integrity

Message authentication schemes: A tool for protecting integrity.

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)
>

I .\,)

A||Ce message BO

J

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

CSE 484 - Winter 2023

Another Tool: Hash Functions

CSE 484 - Winter 2023

Hash Functions: Main Idea

P hash function H
“ message "~
./ h

/ X.\
/ \

I \ y
[)
\) e y

-~

bit strings of a-ﬁ; length n-bit bit strings

message
“digest”

* Hash function H is a lossy compression function
— Collision: h(x)=h(x’) for distinct inputs x, x’
* H(x) should look “random”’
— Every bit (almost) equally likely to be 0 or 1
* Cryptographic hash function needs a few properties...

CSE 484 - Winter 2023

Property 1: One-Way

* Intuition: hash should be hard to invert
— “Preimage resistance”
— Let h(x’) =y in {0,1}" for a random x’
— Giveny, it should be hard to find any x such that h(x)=y

e How hard?

— Brute-force: try every possible x, see if h(x)=y

— SHA-1 (common hash function) has 160-bit output
* Expect to try 2'59 inputs before finding one that hashes to y.

CSE 484 - Winter 2023

Property 2: Collision Resistance

 Should be hard to find x#x’ such that h(x)=h(x’)

CSE 484 - Winter 2023

Birthday Paradox

Are there two people in the first 1/8 of this class that have the same
birthday?
— 365 days in a year (366 some years)
* Pick one person. To find another person with same birthday would take on the order of
365/2 = 182.5 people
* Expect birthday “collision” with a room of only 23 people.
* For simplicity, approximate when we expect a collision as sqrt(365).

Why is this important for cryptography?
— 228 different 128-bit values

* Pick one value at random. To exhaustively search for this value requires trying on average
2'?7 values.

 Expect “collision” after selecting approximately 2%4 random values.
* 64 bits of security against collision attacks, not 128 bits.

CSE 484 - Winter 2023

Property 2: Collision Resistance

 Should be hard to find x#x’ such that h(x)=h(x’)

* Birthday paradox means that brute-force collision search is
only O(2"?), not O(2")
— For SHA-1, this means O(28°) vs. O(2'°)

CSE 484 - Winter 2023

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

One can prove this by constructing a function that has one property but
not the other.

CSE 484 - Winter 2023

Property 3: Weak Collision Resistance

* Given randomly chosen x, hard to find x’ such that h(x)=h(x’)

— Attacker must find collision for a specific x. By contrast, to break collision
resistance it is enough to find any collision.

— Brute-force attack requires O(2") time

* Weak collision resistance does not imply collision resistance.

CSE 484 - Winter 2023

Hashing vs. Encryption

Hashing is one-way. There is no “un-hashing”

— A ciphertext can be decrypted with a decryption key... hashes have no
equivalent of “decryption”

Hash(x) looks “random” but can be compared for equality with
Hash(x’)

— Hash the same input twice = same hash value

— Encrypt the same input twice - different ciphertexts

Crytographic hashes are also known as “cryptographic
checksums” or “message digests”

CSE 484 - Winter 2023

Application: Password Hashing

Instead of user password, store hash(password)

When user enters a password, compute its hash and
compare with the entry in the password file

Why is hashing better than encryption here?

System does not store actual passwords
Don’t need to worry about where to store the key
Cannot go from hash to password

CSE 484 - Winter 2023

Application: Password Hashing

* Which property do we need?
— One-wayness?
— (At least weak) Collision resistance?
— Both?

* This is not the whole story on password storage; we’ll return
to this later in the course.

CSE 484 - Winter 2023

Application: Software Integrity
BigFirm™ — ===~ LT - > f}

T > The NYTimes
hash(goodFile)

User

Goal: Software manufacturer wants to ensure file is received
by users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

CSE 484 - Winter 2023

Application: Software Integrity

* Which property do we need?
— One-wayness?
— (At least weak) Collision resistance?
— Both?

CSE 484 - Winter 2023

Which Property Do We Need?

One-wayness, Collision Resistance, Weak CR?

* UNIX passwords stored as hash(password)
— One-wayness: hard to recover the/a valid password
* Integrity of software distribution

— Weak collision resistance

— But software images are not really random... may need full collision resistance if
considering malicious developers

CSE 484 - Winter 2023

Common Hash Functions

SHA-2: SHA-256, SHA-512, SHA-224, SHA-384
SHA-3: standard released by NIST in August 2015

MDs5 - Don’t use for security!

— 128-bit output

— Designed by Ron Rivest, used very widely

— Collision-resistance broken (summer of 2004)

SHA-1 (Secure Hash Algorithm) — Don’t use for security!
— 160-bit output

— US government (NIST) standard as of 1993-95

— Theoretically broken 2005; practical attack 2017!

CSE 484 - Winter 2023

SHA-1 Broken in Practice (2017)

Collision attack: same hashes

Google just cracked one of the sa ks
building blocks of web)

encryption (but don't worry) St

It’s all over for SHA-1

by Russell Brandom | @russellbrandom | Feb 23, 2017, 11:49am EST

Good doc

https://shattered.io

Bad doc

CSE 484 - Winter 2023

https://shattered.io/

Recall: Achieving Integrity

Message authentication schemes: A tool for protecting integrity.

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)
>

I .0)

A||Ce message BO

J

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

CSE 484 - Winter 2023

MAC with SHA3

SHA3(Key || Message)
Nice and simple ©

Previous hash functions couldn’t quite be used in this way
(see: length extension attack)

— HMAC construction (FYI), roughly H(K1,H(K2,M))

Why not encryption? (Historical reasons)

— Hashing is faster than block ciphers in software

— Can easily replace one hash function with another

— There used to be US export restrictions on encryption

CSE 484 - Winter 2023

Authenticated Encryption

* What if we want both privacy and integrity?

* Natural approach: combine encryption scheme and a MAC.

But be careful!
— Obvious approach: Encrypt-and-MAC

— Problem: MAC is deterministic! same plaintext = same MAC

FIRE

1

Encryptie

MACKm

DON’T FIRE
Encryptie MACkm
C’ T2

CSE 484 - Winter 2023

FIRE

1

Encryptke

l

MACKm

C’3

T3

Authenticated Encryption

M
* Instead: I
Encrypt then MAC. Encrlvpt
C' |— MAC
* (Notasgood: 1
MAC-then-E t 4
en-Encrypt) = ‘ -

Ciphertext C

Encrypt-then-MAC

CSE 484 - Winter 2023

Stepping Back:
Flavors of Cryptography
* Symmetric cryptography

— Both communicating parties have access to a shared random
string K, called the key.

* Asymmetric cryptography
— Each party creates a public key pk and a secret key sk.

CSE 484 - Winter 2023

Symmetric Setting

Both communicating parties have access to a shared
random string K, called the key.

>| Decapsulate IM> g
I
K

Bob
K

Adversary

CSE 484 - Winter 2023

Asymmetric Setting

Each party creates a public key pk and a secret key sk.

>| Decapsulate IM>
I

pka,sks

pkA Bob
pks,sks

Adversary

CSE 484 - Winter 2023

Public Key Crypto: Basic Problem

public key

public key | - . . private key
B

Bob

lgnore for now: How do we

Given: Everybody knows Bob’s public key 7 KnOW IS REALLY Bobs?
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

CSE 484 - Winter 2023

Applications of Public Key Crypto

* Encryption for confidentiality

— Anyone can encrypt a message
* With symmetric crypto, must know secret key to encrypt

— Only someone who knows private key can decrypt

— Key management is simpler (or at least different)
* Secretis stored only at one site: good for open environments

* Digital signatures for authentication
— Can “sign” a message with your private key
* Session key establishment

— Exchange messages to create a secret session key
— Then switch to symmetric cryptography (why?)

CSE 484 - Winter 2023

Session Key Establishment

CSE 484 - Winter 2023

Modular Arithmetic

* Civen g and prime p, compute: g'mod p, g2mod p, ... g'°°mod p
— For p=11, g=10
* 10'mod 11 =10, 102 mod 11 =1, 103 mod 11 =10, ...
* Produces cyclic group {10, 1} (order=2)
— For p=11, g=7
e 77mod11=7,72mod11=5,72mod 11 =2, ...
* Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)
—Numbers “wrap around” after they reach p
* g=7is a “generator” of Z*

CSE 484 - Winter 2023

Diffie-Hellman Protocol (1976)

Diffieand Hellman Receive
2015 Turing Award

CSE 484 - Winter 2023

Diffie-Hellman Protocol (1976)

 Alice and Bob never met and share no secrets
* Publicinfo:pandg

— pisalarge prime, g is a generator of Z*
* Z,*={1,2... p1};aisin Z,* if there is an i such that a=g' mod p

Pick secret, random x Pick secret, randomy
[) *
: gY mod p :
<€
Alice Bob

Compute k=(g")*=g"¥ mod p Compute k=(g*)Y=g" mod p

CSE 484 - Winter 2023

Example Diffie Hellman Computation

PUBLIC
— p=m
— g =D
— (gis a generator for group mod p)

Alice: x=9, sends 6 (g”x mod p = 29 mod 11 = 6)
Bob: y=4, send 5 (g*y mod p = 24 mod 11 = 5)

A compute: 5°x mod 11 (59 mod 11 = 9)
B compute 6”y mod 11 (6”4 mod 11 = 9)
Both get 9

All computations modulo 11

CSE 484 - Winter 2023

Diffie-Hellman: Conceptually

Alice Bob

Common paint %

Secret colours @

I RUI

\
A
|
A

Public transport

(assume

that mixture separation D

is expensive) l I
Secret colours @

Common secret -

\/
)\

.+'.

Common paint: pand g
Secret colors: x and y

Send over public transport:
g*mod p
g¥ mod p

Common secret: gy mod p

[from Wikipedia]

CSE 484 - Winter 2023

Why is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
given g* mod p, it’s hard to extract x

— There is no known efficient algorithm for doing this
— This is not enough for Diffie-Hellman to be secure!
Computational Diffie-Hellman (CDH) problem:

given g* and gY, it’s hard to compute g% mod p

— ... unless you know x ory, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem:

given g* and gV, it’s hard to tell the difference between
g% mod p and g"mod p where r is random

CSE 484 - Winter 2023

Diffie-Hellman Caveats (1)

* Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against
passive attackers

— Common recommendation:
* Choose p=2g+1, where qis also a large prime

* Choose g that generates a subgroup of order qin Z_p*
e DDH is hard in this group

— Eavesdropper can’t tell the difference between the established key and a
random value

— In practice, often hash g¥¥mod p, and use the hash as the key
— Can use the new key for symmetric cryptography

CSE 484 - Winter 2023

Diffie-Hellman Caveats (2)

» Diffie-Hellman protocol (by itself) does not provide
authentication (against active attackers)

— Person in the middle attack (aka “man in the middle attack”)

CSE 484 - Winter 2023

Diffie-Hellman Key Exchange Today

* Important Note:
— We have discussed discrete logs modulo integers

— Significant advantages in using elliptic curve groups

* Groups with some similar mathematical properties (i.e., are “groups”) but have better
security and performance (size) properties

* Today’s de-facto standard

CSE 484 - Winter 2023

Stepping Back: Asymmetric Crypto

* We’ve just seen session key establishment
— Can then use shared key for symmetric crypto

* Next: public key encryption
— For confidentiality

* Then: digital signatures
— For authenticity

CSE 484 - Winter 2023

	CSE 484 / CSE M 584: �Applied Cryptography
	Announcements / Plan
	Review: Now: Achieving Integrity
	Another Tool: Hash Functions
	Hash Functions: Main Idea
	Property 1: One-Way
	Property 2: Collision Resistance
	Birthday Paradox
	Property 2: Collision Resistance
	One-Way vs. Collision Resistance
	Property 3: Weak Collision Resistance
	Hashing vs. Encryption
	Application: Password Hashing
	Application: Password Hashing
	Application: Software Integrity
	Application: Software Integrity
	Which Property Do We Need?�One-wayness, Collision Resistance, Weak CR?
	Common Hash Functions
	SHA-1 Broken in Practice (2017)
	Recall: Achieving Integrity
	MAC with SHA3
	Authenticated Encryption
	Authenticated Encryption
	Stepping Back: �Flavors of Cryptography
	Symmetric Setting
	Asymmetric Setting
	Public Key Crypto: Basic Problem
	Applications of Public Key Crypto
	Session Key Establishment
	Modular Arithmetic
	Diffie-Hellman Protocol (1976)
	Diffie-Hellman Protocol (1976)
	Example Diffie Hellman Computation
	Diffie-Hellman: Conceptually
	Why is Diffie-Hellman Secure?
	Diffie-Hellman Caveats (1)
	Diffie-Hellman Caveats (2)
	Diffie-Hellman Key Exchange Today
	Stepping Back: Asymmetric Crypto

