CSE 484: Computer Security and Privacy

Lab3 + Anonymity

Spring 2023

David Kohlbrenner
dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno, Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Logistics

• Lab 2 due today
• Lab 3 out today/tomorrow
 • Start reading through it asap
tinyserv

A tiny bad http server in C
tinyserv – a tiny, bad, HTTP server

• ~1500 lines of C code
• Moderately well commented
• Quite buggy 😊
• You can interact with it via command line tools or a web browser
Quick demo
Major features

• ‘admin’ login
 • Sets a randomized password on server start
 • Successful login sets a cookie that lets admins access admin.txt

• Dynamic content fills
 • Some pages have dynamic content (notably 404s) that gets filled at request

• Response caching
 • Pages are cached in a hashtable on first send
 • Future responses will check the hashtable first
Notable things for the lab/FP

• There is an additional cookie: the lab group secret key
 • This is NOT part of the lab, it is there to prevent accidentally interacting with other groups’ servers

• The server is multithreaded, and uses a thread pool to handle requests
 • This is NOT part of the intended set of bugs, you can ignore all multithreading aspects
 • It can make debugging slightly annoying
 • It is buggy and will crash the server if you spam page loads
Anonymity
"On the Internet, nobody knows you're a dog."

The New Yorker, 1993
Privacy on Public Networks

• Internet is designed as a public network
 • Machines on your LAN may see your traffic, network routers see all traffic that passes through them

• Routing information is public
 • IP packet headers identify source and destination
 • Even a passive observer can figure out who is talking to whom

• Encryption does not hide identities
 • Encryption hides payload, but not routing information
 • Even IP-level encryption (tunnel-mode IPSec/ESP) reveals IP addresses of IPSec gateways

• Modern web: Accounts, web tracking, etc. ...
What is Anonymity?

• Anonymity is the state of being not identifiable within a set of subjects
 • You cannot be anonymous by yourself!
 • Big difference between anonymity and confidentiality
 • Hide your activities among others’ similar activities

• Unlinkability of action and identity
 • For example, sender and email they send are no more related after observing communication than before

• Unobservability (hard to achieve)
 • Observer cannot even tell whether a certain action took place or not
Questions

Q1: Why might we *want* people to have anonymity on the Internet?

Q2: Why might we *not want* people to have anonymity on the Internet?
Applications of Anonymity (I)

• Privacy
 • Hide online transactions, Web browsing, etc. from intrusive governments, marketers and archivists

• Untraceable electronic mail
 • Corporate whistle-blowers
 • Political dissidents
 • Socially sensitive communications (online AA meeting)
 • Confidential business negotiations

• Law enforcement and intelligence
 • Sting operations and honeypots
 • Secret communications on a public network
Applications of Anonymity (II)

• Digital cash
 • Electronic currency with properties of paper money (online purchases unlinkable to buyer’s identity)

• Anonymous electronic voting

• Censorship-resistant publishing
Part 1: Anonymity in Datasets
How to release an anonymous dataset?

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Jr.; Saul Hansell contributed reporting for this article. Published: August 9, 2006

Buried in a list of 20 million Web search queries collected by AOL and recently released on the Internet is user No. 4417749. The number was assigned by the company to protect the searcher's anonymity, but it was not much of a shield.

No. 4417749 conducted hundreds of searches over a three-month period on topics ranging from "numb fingers" to "60 single men" to "dog that urinates on everything."

And search by search, click by click, the identity of AOL user No. 4417749 became easier to discern. There are queries for "landscapers in Lilburn, Ga.,” several people with the last name Arnold and "homes sold in shadow lake subdivision gwinnett county georgia."

It did not take much investigating to follow that data trail to Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga., frequently researches her friends' medical ailments and loves her three dogs. "Those are my searches," she said, after a reporter read part of the list to her.
How to release an anonymous dataset?

• Possible approach: remove identifying information from datasets?

Massachusetts medical+voter data
[Sweeney 1997]
k-Anonymity

- Each person contained in the dataset cannot be distinguished from at least k-1 others in the data.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>State of domicile</th>
<th>Religion</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramsha</td>
<td>29</td>
<td>Female</td>
<td>Tamil Nadu</td>
<td>Hindu</td>
<td>Cancer</td>
</tr>
<tr>
<td>Yadu</td>
<td>24</td>
<td>Female</td>
<td>Kerala</td>
<td>Hindu</td>
<td>Viral infection</td>
</tr>
<tr>
<td>Salima</td>
<td>28</td>
<td>Female</td>
<td>Tamil Nadu</td>
<td>Muslim</td>
<td>TB</td>
</tr>
<tr>
<td>Kaker</td>
<td>27</td>
<td>Male</td>
<td>Karnataka</td>
<td>Parsi</td>
<td>No illness</td>
</tr>
<tr>
<td>Joan</td>
<td>24</td>
<td>Female</td>
<td>Kerala</td>
<td>Christian</td>
<td>Heart-related</td>
</tr>
<tr>
<td>Bahuksana</td>
<td>23</td>
<td>Male</td>
<td>Karnataka</td>
<td>Buddhist</td>
<td>TB</td>
</tr>
<tr>
<td>Rambha</td>
<td>19</td>
<td>Male</td>
<td>Kerala</td>
<td>Hindu</td>
<td>Cancer</td>
</tr>
<tr>
<td>Kishor</td>
<td>29</td>
<td>Male</td>
<td>Karnataka</td>
<td>Hindu</td>
<td>Heart-related</td>
</tr>
<tr>
<td>John</td>
<td>17</td>
<td>Male</td>
<td>Kerala</td>
<td>Christian</td>
<td>Heart-related</td>
</tr>
<tr>
<td>John</td>
<td>19</td>
<td>Male</td>
<td>Kerala</td>
<td>Christian</td>
<td>Viral infection</td>
</tr>
</tbody>
</table>
k-Anonymity

• Each person contained in the dataset cannot be distinguished from at least k-1 others in the data.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>State of domicile</th>
<th>Religion</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Female</td>
<td>Tamil Nadu</td>
<td>*</td>
<td>Cancer</td>
</tr>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Female</td>
<td>Kerala</td>
<td>*</td>
<td>Viral infection</td>
</tr>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Female</td>
<td>Tamil Nadu</td>
<td>*</td>
<td>TB</td>
</tr>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Male</td>
<td>Karnataka</td>
<td>*</td>
<td>No illness</td>
</tr>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Female</td>
<td>Kerala</td>
<td>*</td>
<td>Heart-related</td>
</tr>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Age ≤ 20</td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>20 < Age ≤ 30</td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Age ≤ 20</td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Age ≤ 20</td>
<td>Male</td>
<td>Kerala</td>
<td>*</td>
<td>Viral infection</td>
</tr>
</tbody>
</table>

Doesn’t work for high-dimensional datasets (which tend to be sparse)

Robust De-anonymization of Large Sparse Datasets

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin
Netflix Challenge:

- Netflix released a (non-uniform) random sample of user’s movie ratings
- Challenge was to build a better recommendation system
- Data was ‘anonymous’
 - ID # only
 - Random selection of a given user’s ratings
 - “noise” added (appears that there was no noise)
Result: No real anonymity

• Cross-correlate with IMBD ratings

• A handful (6 or fewer) ratings of non-top 500 movies is enough!
Differential Privacy

• **Setting:** Trusted party has a database

• **Goal:** allow queries on the database that are useful but preserve the privacy of individual records

• **Differential privacy intuition:** add noise so that an output is produced with similar probability whether any single input is included or not

• Privacy of the computation, not of the dataset
Part 2: Anonymity in Communication
Chaum’s Mix

• Early proposal for anonymous email

• Modern anonymity systems use Mix as the basic building block

Before spam, people thought anonymous email was a good idea 😊
Basic Mix Design

A
{r_1, {r_0, M}_{pk(B)}, B}_{pk(mix)}

C
{r_2, {r_3, M’}_{pk(E)}, E}_{pk(mix)}

D
{r_4, {r_5, M’’}_{pk(B)}, B}_{pk(mix)}

Mix

B
{r_0, M}_{pk(B)}, B

E
{r_5, M’’}_{pk(B)}, B

{r_3, M’}_{pk(E)}, E

Adversary knows all senders and all receivers, but cannot link a sent message with a received message
M includes $\{K_1, A\}_{pk(mix)}$, K_2 where K_2 is a fresh public key

Secrecy without authentication
(good for an online confession service 😊)
Mix Cascades and Mixnets

- Messages are sent through a sequence of mixes
 - Can also form an arbitrary network of mixes (“mixnet”)
- Some of the mixes may be controlled by attacker, but even a single good mix ensures anonymity
- Pad and buffer traffic to foil correlation attacks
Disadvantages of Basic Mixnets

• Public-key encryption and decryption at each mix are **computationally expensive**

• Basic mixnets have **high latency**
 • OK for email, not OK for anonymous Web browsing

• Challenge: **low-latency anonymity network**
Another Idea: Randomized Routing

e.g., Onion Routing

• Sender chooses a random sequence of routers
 • Some routers are honest, some controlled by attacker
 • Sender controls the length of the path
Onion Routing

- Routing info for each link encrypted with router’s public key
- Each router learns only the identity of the next router
Tor

• Second-generation onion routing network
 • http://tor.eff.org
 • Developed by Roger Dingledine, Nick Mathewson and Paul Syverson
 • Specifically designed for low-latency anonymous Internet communications

• Running since October 2003

• “Easy-to-use” client proxy
 • Freely available, can use it for anonymous browsing
Client proxy establishes a symmetric session key and circuit with Onion Router #1
Tor Circuit Setup (2)

• Client proxy extends the circuit by establishing a symmetric session key with Onion Router #2
 – Tunnel through Onion Router #1
Client proxy extends the circuit by establishing a symmetric session key with Onion Router #3

– Tunnel through Onion Routers #1 and #2
Using a Tor Circuit

• Client applications connect and communicate over the established Tor circuit.
How do you know who to talk to?

- Directory servers
 - Maintain lists of active onion routers, their locations, current public keys, etc.
 - Control how new routers join the network
 - “Sybil attack”: attacker creates a large number of routers
 - Directory servers’ keys ship with Tor code
Location Hidden Service

- **Goal:** deploy a server on the Internet that anyone can connect to without knowing where it is or who runs it
- Accessible from anywhere
- Resistant to censorship
- Can survive a full-blown DoS attack
- Resistant to physical attack
 - Can’t find the physical server!
Creating a Location Hidden Server

Server creates circuits to "introduction points"

Server gives intro points’ descriptors and addresses to service lookup directory

Client obtains service descriptor and intro point address from directory

Service Lookup Server

Introduction Points

Server Bob

Client Alice
Using a Location Hidden Server

Client creates a circuit to a “rendezvous point”

Rendezvous point splices the circuits from client & server

If server chooses to talk to client, connect to rendezvous point

Client sends address of the rendezvous point and any authorization, if needed, to server through intro point
Issues and Notes of Caution

• Passive traffic analysis
 • Infer from network traffic who is talking to whom
 • To hide your traffic, must carry other people’s traffic!

• Active traffic analysis
 • Inject packets or put a timing signature on packet flow

• Compromise of network nodes
 • Attacker may compromise some routers
 • Powerful adversaries may compromise “too many”
 • It is not obvious which nodes have been compromised
 • Attacker may be passively logging traffic
 • Better not to trust any individual router
 • Assume that some fraction of routers is good, don’t know which
Issues and Notes of Caution

• Tor isn’t completely effective by itself
 • Tracking cookies, fingerprinting, etc.
 • Exit nodes can see everything!
Issues and Notes of Caution

• The simple act of using Tor could make one a target for additional surveillance

• Hosting an exit node could result in illegal activity coming from your machine

• Tor not designed to protect against adversaries with the capabilities of a state (public statement by designers, at least in the past)