Hello 😊

- Instructor: David Kohlbrenner (he/him)

TA Staff

- David Chen hanfec@cs
- Aragorn Crozier aracro@cs
- Sara Deutscher saradeu@cs
- Johnson Kuang jkuang7@cs
- Basia Radka basia@cs
- Alex Saveau asaveau@cs
- Shubhkarman Singh shubhs2@cs
- William Travis wibrotra@cs
- May Wang maywangg@cs
- Shaoqi Wang shaoqi@cs
Course Plan

• Lectures and Sections and (most) Office Hours in-person
 – Lectures are recorded (please attend!)
 * Sections may be only partially recorded
 * Office hours will not be recorded
 * Recordings include student speech/video/chat (don’t share if you don’t want to!) and will not be shared outside the class
 – Access the links via Canvas

• Evaluation
 – Labs
 – Homeworks
 – Final project; no exams
 – Participation/in-class exercises
Discussion

- **Everyone** in this class **deserves** to be in this class!!
- We are **all** coming to this course with **different backgrounds** and experiences
- There are **no bad questions**; never belittle a questioner or their question; always be supportive
- Instructors / staff aren’t always aware of everything, so **please call our attention to things as needed**
 - E.g., someone might harm someone else with what they say without ever realizing that what they said is harmful; that harm still exists, regardless of whether there was an intent to harm
Course Resource Cheat Sheet

- **Classrooms**: Lectures, sections, office hours
- **Zoom**: Limited office hours
- **Canvas**: Links to recordings, assignment submissions, grades
- **Course website**: Schedule, assignment details, readings, policies
- **Ed**: Discussion board, Announcements
- **Email**: Reach course staff privately
Pollev and Canvas

- We’ll do a lot of breakouts in class
- Depending on the topic, we’ll be using pollev or canvas

https://pollev.com/dkohlbre today
What Does “Security” Mean to You?

1) Spend a few minutes defining security in the context of computing/technology.

Try putting some answers in https://pollev.com/dkohlbre
What Does “Security” Mean to You?

1) Spend a few minutes defining security in the context of computing/technology.

2) Talk to your neighbors about your definitions

3) Come up with a group definition

Try putting some answers in https://pollev.com/dkohlbre
What are topics you are excited about?

• It is also okay if you don’t know what topics you are interested in yet!

• We can ask this question again at the end of the course, after you know more about different topics.
How Systems Fail

Systems may fail for many reasons, including:

• **Reliability** deals with accidental failures
• **Usability** deals with problems arising from operating mistakes made by users
• **Design and goal oversights** deals with oversights, errors, and omissions during the design process
• **Security** deals with intentional failures created by intelligent parties
 – Security is about computing in the presence of an adversary
 – But security, reliability, usability, and design/goals oversights are all related
Challenges: What is “Security”?

• What does security mean?
 – Often the hardest part of building a secure system is figuring out what security means (“threat modeling”)
 – Who are the stakeholders for which we are considering “security”?
 – What are the assets to protect?
 – What are the threats to those assets?
 – Who are the adversaries, and what are their resources?
 – What is the security policy or goals?

• Perfect security does not exist!
 – Security is not a binary property
 – Security is about risk management

Multiple assignments and activities are designed to exercise your thinking about these issues.
Privacy?

- Privacy often strongly overlaps security

- Privacy may also consider when systems *work as intended*

- Not a hard-and-fast distinction
 - Privacy and security are generally intertwined
Two Key Themes of this Course

1. How to think about security and privacy
 – The “Security Mindset” – a “new” way to think about systems
 – (This mindset will be valuable even outside of the security context, e.g., to consider diverse stakeholders of a system)

2. Technical aspects of security and privacy
 – Vulnerabilities and attack techniques
 – Defensive technologies
 – Topics including: software security, cryptography, malware, web security, web privacy, smartphone security, authentication, usable security, anonymity, physical security, security for emerging technologies
Theme 1: Security Mindset

• Thinking critically about designs, **challenging assumptions**
• Being **curious**, thinking **like an attacker**, exploring **use cases not considered by the designers**,
 • “That new product X sounds awesome, I can’t wait to use it!” versus “That new product X sounds cool, but I wonder what would happen if someone did Y with it; I wonder if the designers thought of Z…”
• Why it’s important
 – **Technology changes**, so learning to think like a security person is more important than learning specifics of today’s systems
 – Will help you **design better systems/solutions**
 – Interactions with **broader context**: law, policy, ethics, etc.
Security Mindset Example
Security Mindset Example
Learning the Security Mindset

- Several approaches for developing “The Security Mindset” and for exploring the broader contextual issues surrounding computer security
 - Homework #1
 - Security reviews and ethics reflections
 - May work in groups of up to 3 people (groups are encouraged – *lots of value in discussing security with others!*)
 - In class discussions and activities
 - Participation in Ed discussion board (e.g., asking about news stories, technologies)
A Word on Groupwork

• We require it*
 – Need to learn how to work in groups
 • Especially if you don’t like it 😊
 – Attack-based labs require some creativity, where group interactions can help generate ideas

• Make sure everyone works on _all_ parts of the labs/HWs
 – Don’t split up problems and assign them out!

*contact course staff ASAP if this isn’t going to work for you
What This Course is Not About

• **Not** a comprehensive course on computer security
 – Computer security is a broad discipline!
 – Impossible to cover everything in one quarter
 – So be careful in industry or wherever you go!

• **Not** about all of the latest and greatest attacks
 – Read news, ask questions, discuss on Ed

• **Not** a course on ethical, legal, or economic issues
 – We will touch on these issues, but the topic is huge

• **Not** a course on how to “break into” systems
 – Yes, we will learn about attacks ... but the ultimate goal is to develop an understanding of attacks so that you can build more secure systems
Security: Not Just for PCs

- smartphones
- voting machines
- EEG headsets
- medical devices
- wearables
- RFID
- mobile sensing platforms
- cars
- game platforms
- airplanes
Communication

• dkohlbre@cs
 – Use this if something is sensitive, personal, confidential, etc.

• cse484-tas@cs.washington.edu
 – Use this to reach all course staff (including instructor)

• Ed Discussion Board
 – Use this if other students in the class would benefit from your question/answers [common case]

• We will do our best to be responsive, but please be professional, and plan ahead!
Course Materials

• Readings:
 – I’ll be posting reading materials as we go
 – Feel like we’re missing something? Let me know!

• Attend lectures
 – Lectures will not follow any textbooks
 – Lectures will focus on “big-picture” principles and ideas

• Attend sections (if you have questions about assignments, best to attend rather than watch later)
 – Details not covered in lecture, especially about homeworks and labs
 – More opportunity for discussion
Guest Lectures

• We will have a few guest lectures throughout the quarter
 – Useful to give you a different perspective: research, industry, government, legal
Course Logistics (CSE 484)

Security is a contact sport!

• Labs (45% of the grade)
• Homework (25% of grade)
• Participation and in-class activities (10% of the grade)
• Final project (20% of the grade)
Same as before, but...

- Labs (42% of the grade) [-3%]
- Homework (22% of grade) [-3%]
- Research readings (10%) [+10%]
- Participation and in-class activities (10%)
- Final project (16% of the grade) [-4%]
Labs

• General plan:
 – 3 labs
 • First lab out next week
 – Topics:
 • Software security (Buffer overflows, ...)
 • Web security (XSS attacks, SQL injections, ...)
 • Finding + fixing vulnerabilities
 – Submit to Canvas/gradescope
 – Groups must be configured on Canvas
Homework

• 3 homeworks distributed across quarter
 – First homework out shortly
Ethics

• To learn to defend systems, you will learn to attack them. You must use this knowledge ethically.
In-Class Participation

• Trying to bring the best of online, in-person
 – In-class discussions, polls, and other online tools
 – More use of the online discussion board
 – Questions live and via pollev

• Main component: Lightly graded in-class activities
 – Canvas “quiz” submission (intended for use during class, but can be submitted up until start of next lecture); not a “quiz” in the traditional sense
Late Submission Policy

• 5 free late days, no questions asked
 – Cumulative, throughout the quarter
 – Use up to 3 for one submission
 – All group members use days at once

• After that, late assignments will be dropped 20% per calendar day.
 – Late days will be rounded up
 – So an assignment turned in 26 hours late will be downgraded 40%
 – See website for exceptions -- a small number of assignments must be turned in on time
Discussion Board

• We’ve set up a Ed Discussion Board for this course
• Please use it to discuss the homework assignments and labs and other general class materials
• You can also use it to exercise the “security mindset”
 – Discussions of how movies get security right or wrong
 – Discussions of news articles about security (or not about security, but that miss important security-related things)
 – Discussions about security flaws you observe in the real world
Announcements

• We will use Ed for announcements
 – It will send an email to you for announcements
Final Project

- **No midterm or final exam!**
- Final project will require you to find and fix vulnerabilities in a medium (~1200 lines) piece of software.
 - Lab 3 will be warmup for the final project
- You will also need to explain your decisions and evaluation of the vulnerabilities
 - This will be either scheduled with TAs or a video (TBD)
Prerequisites (CSE 484)

- Required: Data Abstractions (CSE 332)
- Required: Hardware/Software Interface (CSE 351)
- Assume: Working knowledge of C and assembly
 - One of the labs will involve writing buffer overflow attacks in C
 - You must have detailed understanding of x86 architecture, stack layout, calling conventions, etc.
- Assume: Working knowledge of software engineering tools for Unix environments (gdb, etc)
- Assume: Working knowledge of Java and JavaScript
- Assume: Ability to learn new programming languages / skills easily
Prerequisites (CSE 484)

• Useful (not required): Computer Networks; Operating Systems
 – Will help provide deeper understanding of security mechanisms and where they fit in the big picture

• Useful (not required): Complexity Theory; Discrete Math; Algorithms
 – Will help with the more theoretical aspects of this course.
Prerequisites (CSE 484)

- Most of all:
 - Eagerness to learn!
 - This is a 400 level course.
 - We expect you to push yourself to learn as much as possible.
 - We expect you to be a strong, independent learner capable of learning new concepts from the lectures, the readings, and on your own.
Another Example
To Do

• Homework #1
 – Now: Start forming groups (e.g., use discussion board) and thinking about technologies you’d like to review.

Questions?
dkohlbre@cs
cse484-tas@cs.washington.edu