CSE 484 / CSE M 584: Brief Interlude on Ethics + Start Cryptography

Fall 2023

Franziska (Franzi) Roesner franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

- Things Due
 - Lab 1a, due Friday
 - Research Reading #2 (584M) due Thursday

Ethics Interlude: Vulnerability Analysis and Disclosure

- What do you do if you've found a security problem in a real system?
- Say
 - A commercial website?
 - UW grade database?
 - Boeing 787?
 - TSA procedures?

What would you do? What ethical questions come up?

PollEv.com/franziroesner

Ethics Case Study

- Suppose companies A, B, and C all have a vulnerability, but have not made the existence of that vulnerability public
- Company A has a software update prepared and ready to go that, once shipped, will fix the vulnerability; but B and C are still working on developing a patch for the vulnerability
- Company A learns that attackers are exploiting this vulnerability in the wild
- Should Company A release their patch, even if doing so means that the vulnerability now becomes public and other actors can start exploiting Companies B and C?
- Or should Company A wait until Companies B and C have patches?

PollEv.com/franziroesner

Different Frameworks for Thinking about Ethics

There is not necessarily a clear "correct" answer!

For example:

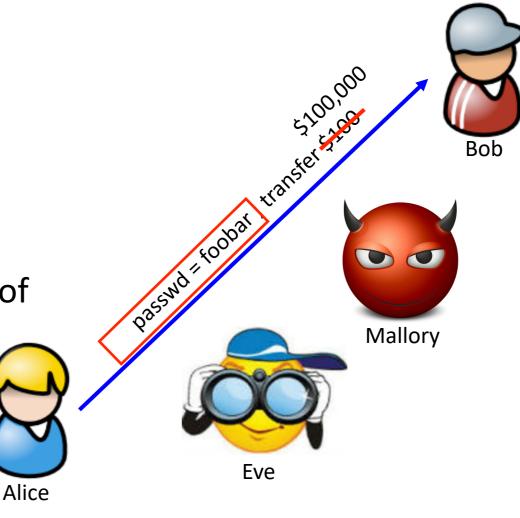
- Consequentialist: Considers the impacts/consequences of different decisions
- Deontological: Considers questions of duties and rights (e.g., right to privacy)

See also: <u>https://securityethics.cs.washington.edu</u>

Next major section of the course: Cryptography

Terminology note: "blockchain" and "crypto"

- Rising interest, mostly in the cryptocurrency space
- For this course: crypto means "cryptography"


Common Communication Security Goals

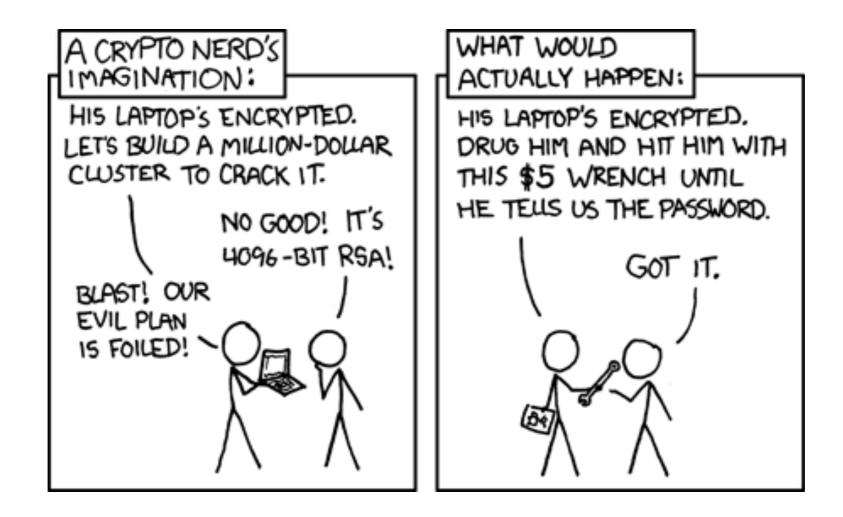
Privacy of data:

Prevent exposure of information

Integrity of data:

Prevent modification of information

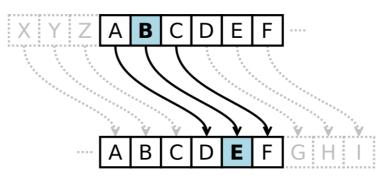
CSE 484 - Fall 2023


Recall Bigger Picture

- Cryptography only one small piece of a larger system
- Must protect entire system
 - Physical security
 - Operating system security
 - Network security
 - Users
 - Cryptography (following slides)
- Recall the weakest link

• Still, cryptography is a crucial part of our toolbox

XKCD: http://xkcd.com/538/


History

- Substitution Ciphers
 - Caesar Cipher
- Transposition Ciphers
- Codebooks
- Machines

 Recommended Reading: The Codebreakers by David Kahn and The Code Book by Simon Singh.

History: Caesar Cipher (Shift Cipher)

 Plaintext letters are replaced with letters a fixed shift away in the alphabet.

- Example:
 - Plaintext: The quick brown fox jumps over the lazy dog
 - Key: Shift 3

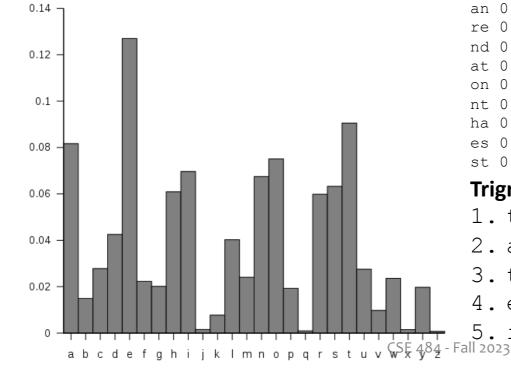
ABCDEFGHIJKLMNOPQRSTUVWXYZ

DEFGHIJKLMNOPQRSTUVWXYZABC

- Ciphertext: wkhtx lfneu rzqir amxps vryhu wkhod cbgrj

History: Caesar Cipher (Shift Cipher)

- ROT13: shift 13 (encryption and decryption are symmetric)
- What is the key space?
 - 26 possible shifts.
- How to attack shift ciphers?
 - Brute force.



History: Substitution Cipher

- Superset of shift ciphers: each letter is substituted for another one.
- One way to implement: Add a secret key
- Example:
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Cipher: ZEBRASCDFGHIJKLMNOPQTUVWXY
- "State of the art" for thousands of years

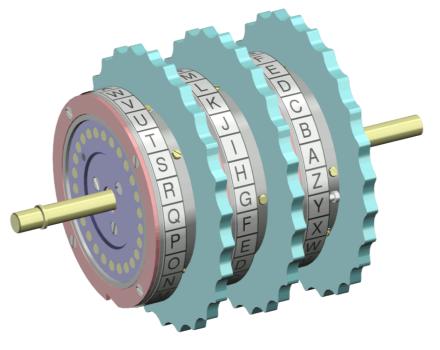
History: Substitution Cipher

- What is the key space?
- How to attack?
 - Frequency analysis.

26! ~= 2^88

Bigrams:

th 1	1.52%	en	0.55%	ng	0.18%
he 1	1.28%	ed	0.53%	of	0.16%
in (0.94%	to	0.52%	al	0.09%
er (0.94%	it	0.50%	de	0.09%
an (0.82%	ou	0.50%	se	0.08%
re (0.68%	ea	0.47%	le	0.08%
nd (0.63%	hi	0.46%	sa	0.06%
at (0.59%	is	0.46%	si	0.05%
on (0.57%	or	0.43%	ar	0.04%
nt (0.56%	ti	0.34%	ve	0.04%
ha (0.56%	as	0.33%	ra	0.04%
es (0.56%	te	0.27%	ld	0.02%
st (0.55%	et	0.19%	ur	0.02%


Trigrams:

1. the	6.ion	11. nce
2. and	7.tio	12. edt
3.tha	8.for	13. tis
4.ent	9.nde	14. oft
5.ing	10.has	15. sth

History: Enigma Machine

Uses rotors (substitution cipher) that change position after each key.

Key = initial setting of rotors

Key space? 26ⁿ for n rotors

CSE 484 - Fall 2023

How Cryptosystems Work Today

- Layered approach: Cryptographic protocols (like "CBC mode encryption") built on top of cryptographic primitives (like "block ciphers")
- Flavors of cryptography: Symmetric (private key) and asymmetric (public key)
- Public algorithms (Kerckhoff's Principle next slide)
- Security proofs based on assumptions (not this course)
- Be careful about inventing your own! (If you just want to use some crypto in your system, use vetted libraries!)