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Announcements

• Lab 1
–Part 1a due Friday
– If you haven’t created a group and gotten access, please 

do so ASAP
–Turning things in:

• Multiple steps, please read Lab 1 description carefully!
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Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
– Put malicious code at a predictable location in memory, usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code (last time)
2. Stack “canaries” (last time)
3. Encrypt or check integrity of pointers
4. Address space layout randomization (today)
5. Code analysis (today)
6. Shadow stacks
7. …
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ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
– Base of executable region
– Position of stack
– Position of heap
– Position of libraries

• Introduced by Linux PaX project in 2001
• Adopted by OpenBSD in 2003
• Adopted by Linux in 2005
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ASLR: Address Space Randomization

• Deployment (examples)
– Linux kernel since 2.6.12 (2005+)
– Android 4.0+
– iOS 4.3+ ; OS X 10.5+
– Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or 
addresses)

• ASLR more effective on 64-bit architectures
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Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for 
adversary’s code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out 
memory on the fly
– Disclosing a single address can reveal the location of all code 

within a library, depending on the ASLR implementation
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Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues J)

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”
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Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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Beyond Buffer Overflows…
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Another Type of Vulnerability

• Consider this code:
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char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;



Another Example
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size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Canvas -> Quizzes -> Oct 9

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Implicit Cast

• Consider this code:
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char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may 
copy huge amounts of 

input into buf.



Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.
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size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission
• What can go wrong?
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if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Time of Use”

• Goal:  Write to file only with permission
• Attacker (in another program) can change meaning 

of “file” between access and open:   
symlink("/etc/passwd", "file");
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if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));



Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long
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Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Attacker Model

• Attacker can guess CandidatePwds through some standard interface
• Naive:  Try all 2568 = 18,446,744,073,709,551,616 possibilities
• Is it possible to derive password more quickly?
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE



Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs
– No format string vulnerabilities
– Good choice of randomness
– Good design

• The software may still be vulnerable to timing attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against
• Even possible over a network
– “Remote timing attacks are possible” (Brumley & Boneh, 2005)
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Other Examples

• Plenty of other examples of timings attacks
– Timing cache misses

• Extract cryptographic keys…
• Recent Spectre/Meltdown attacks

– Duration of a rendering operation
• Extract webpage information

– Duration of a failed decryption attempt
• Different failures mean different thing (e.g., Padding oracles)

• Plenty of other side channels... We‘ll return to this later in the course
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Software Security:
So, what do we do?
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General Principles

• Check inputs
• Check all return values
• Least privilege
• Securely clear memory (passwords, keys, etc.)
• Failsafe defaults
• Defense in depth
– Also: prevent, detect, respond
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General Principles

• Reduce size of trusted computing base (TCB)
• Simplicity, modularity
– But: Be careful at interface boundaries!

• Minimize attack surface
• Use vetted components
• Security by design
– But: tension between security and other goals

• Open design? Open source? Closed source?
– Different perspectives
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Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security problem in a real 
system?

• Say
– A commercial website? 
– UW grade database?
– Boeing 787?
– TSA procedures?
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What would you do? What ethical questions come up?


