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Announcements

• Lab 1:
• Out

• Target 3 and 7 still extra credit (even though we now have working solutions) (still encourage 
everyone to do them)

• Quiz section this week: Definitely attend re: one of the targets! (Heap structures)

• Next week: Monday: I will be at the lecture hall (but still using Zoom)

• Next week: Wednesday: I will be at the lecture hall (but still using Zoom)

• Next week: Friday: Emily McReynolds via Zoom (everyone via Zoom)
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Review Slide: Buffer Overflow: Causes and 
Cures
• Classical memory exploit involves code injection

• Put malicious code at a predictable location in memory, usually masquerading as 
data

• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …
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Correction + Updates from Last Time

• Return-to-libc: May not be available to attacker on all platforms 
because systems may use registers as part of calling into / returning 
from functions

• Return-oriented programing: More flexible

• Return-oriented programming paper: 
https://hovav.net/ucsd/papers/s07.html
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ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005
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ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures
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Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s 
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the 
fly
• Disclosing a single address can reveal the location of all code within a library, 

depending on the ASLR implementation
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Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at 
function return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO 
5000)
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Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t 
influence control flow.)
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Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”
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Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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Other Common Software Security Issues…
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Another Type of Vulnerability

• Consider this code:
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char buf[80]; 

void vulnerable() { 

int len = read_int_from_network(); 

char *p = read_string_from_network(); 

if (len > sizeof buf) { 

error("length too large, nice try!"); 

return; 

} 

memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;



Another Example
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size_t len = read_int_from_network(); 

char *buf; 

buf = malloc(len+5); 

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Breakout Groups

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf


Another Type of Vulnerability

• Consider this code:

• Goal:  Write to file only with permission

• What can go wrong?
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if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));



TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal:  Write to file only with permission

• Attacker (in another program) can change meaning of 
“file” between access and open:   
symlink("/etc/passwd", "file");
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if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));



Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long
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Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Attacker Model

• Attacker can guess CandidatePwds through some 
standard interface

• Naive:  Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Is it possible to derive password more quickly?
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PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Timing Attacks

• Assume there are no “typical” bugs in the software
• No buffer overflow bugs

• No format string vulnerabilities

• Good choice of randomness

• Good design

• The software may still be vulnerable to timing attacks
• Software exhibits input-dependent timings

• Complex and hard to fully protect against
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Hey what about if its over a network?

• “Remote timing attacks are practical” - 2005
• David Brumley, Dan Boneh
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Other Examples

• Plenty of other examples of timings attacks
• Timing cache misses

• Extract cryptographic keys…

• Recent Spectre/Meltdown attacks

• Duration of a rendering operation
• Extract webpage information

• Duration of a failed decryption attempt
• Different failures mean different thing (e.g., Padding oracles)
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Side-channels

• Timing is only one possibility

• Consider:
• Power usage

• Audio

• EM Outputs
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