
CSE 484 / CSE M 584:
Software Security (Continued)

Winter 2022

Tadayoshi (Yoshi) Kohno

yoshi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Lab 1:
• Out

• Target 3 and 7 still extra credit (even though we now have working solutions) (still encourage
everyone to do them)

• Quiz section this week: Definitely attend re: one of the targets! (Heap structures)

• Next week: Monday: I will be at the lecture hall (but still using Zoom)

• Next week: Wednesday: I will be at the lecture hall (but still using Zoom)

• Next week: Friday: Emily McReynolds via Zoom (everyone via Zoom)

CSE 484 / CSE M 584 - Winter 2022

Review Slide: Buffer Overflow: Causes and
Cures
• Classical memory exploit involves code injection

• Put malicious code at a predictable location in memory, usually masquerading as
data

• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …

1/21/2022 CSE 484 - Winter 2022 3

Correction + Updates from Last Time

• Return-to-libc: May not be available to attacker on all platforms
because systems may use registers as part of calling into / returning
from functions

• Return-oriented programing: More flexible

• Return-oriented programming paper:
https://hovav.net/ucsd/papers/s07.html

1/21/2022 CSE 484 - Winter 2022 4

https://hovav.net/ucsd/papers/s07.html

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

1/21/2022 CSE 484 - Winter 2022 5

ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures

1/21/2022 CSE 484 - Winter 2022 6

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the
fly
• Disclosing a single address can reveal the location of all code within a library,

depending on the ASLR implementation

1/21/2022 CSE 484 - Winter 2022 7

Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at
function return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO
5000)

CSE 484 - Winter 2022

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

CSE 484 - Winter 2022

Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

CSE 484 - Winter 2022

Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484 - Winter 2022

Other Common Software Security Issues…

CSE 484 - Winter 2022

Another Type of Vulnerability

• Consider this code:

CSE 484 - Winter 2022

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

Another Example

CSE 484 - Winter 2022

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Breakout Groups

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

• Consider this code:

• Goal: Write to file only with permission

• What can go wrong?

CSE 484 - Winter 2022

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal: Write to file only with permission

• Attacker (in another program) can change meaning of
“file” between access and open:
symlink("/etc/passwd", "file");

CSE 484 - Winter 2022

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

CSE 484 - Winter 2022

Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

CSE 484 - Winter 2022

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Is it possible to derive password more quickly?

CSE 484 - Winter 2022

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Timing Attacks

• Assume there are no “typical” bugs in the software
• No buffer overflow bugs

• No format string vulnerabilities

• Good choice of randomness

• Good design

• The software may still be vulnerable to timing attacks
• Software exhibits input-dependent timings

• Complex and hard to fully protect against

CSE 484 - Winter 20221/21/2022 27

Hey what about if its over a network?

• “Remote timing attacks are practical” - 2005
• David Brumley, Dan Boneh

1/21/2022 CSE 484 - Winter 2022 28

Other Examples

• Plenty of other examples of timings attacks
• Timing cache misses

• Extract cryptographic keys…

• Recent Spectre/Meltdown attacks

• Duration of a rendering operation
• Extract webpage information

• Duration of a failed decryption attempt
• Different failures mean different thing (e.g., Padding oracles)

CSE 484 - Winter 20221/21/2022 29

Side-channels

• Timing is only one possibility

• Consider:
• Power usage

• Audio

• EM Outputs

CSE 484 - Winter 20221/21/2022 30

