
CSE 484 / CSE M 584:
Software Security (Continued)

Winter 2022

Tadayoshi (Yoshi) Kohno

yoshi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Lab 1:
• Out

• Target 3 and 7 still extra credit (even though we now have working solutions) (still encourage
everyone to do them)

• Quiz section this week: Definitely attend re: one of the targets! (Heap structures)

• Next week: Monday: I will be at the lecture hall (but still using Zoom)

• Next week: Wednesday: I will be at the lecture hall (but still using Zoom)

• Next week: Friday: Emily McReynolds via Zoom (everyone via Zoom)

CSE 484 / CSE M 584 - Winter 2022

Recommended Reading

• It will be hard to do Lab 1 without:
• Reading (see course schedule):

• Smashing the Stack for Fun and Profit

• Exploiting Format String Vulnerabilities

• Attending section this week and next

1/19/2022 CSE 484 - Winter 2022 3

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …

1/19/2022 CSE 484 - Winter 2022 4

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-2004

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+

(10.4 for stack but not heap), Android 2.3+

1/19/2022 CSE 484 - Winter 2022 5

Canvas In-Class Activity

• What might an attacker be able to accomplish even if they cannot
execute code on the stack?

1/19/2022 CSE 484 - Winter 2022 6

What Does “Executable Space Protection”
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space
protection will not block control transfer!
→ return-to-libc exploits

1/19/2022 CSE 484 - Winter 2022 7

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

1/19/2022 CSE 484 - Winter 2022 8

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

1/19/2022 CSE 484 - Winter 2022 9

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

1/19/2022 CSE 484 - Winter 2022 10

Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”

1/19/2022 CSE 484 - Winter 2022 11

Return-Oriented Programming

1/19/2022 CSE 484 - Winter 2022 12

Defense: Run-Time Checking: StackGuard

1/19/2022 CSE 484 - Winter 2022 13

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

1/19/2022 CSE 484 - Winter 2022 14

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
• For example, 8% for Apache Web server at one point in time

1/19/2022 CSE 484 - Winter 2022 15

Defeating StackGuard

1/19/2022 CSE 484 - Winter 2022 16

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

1/19/2022 CSE 484 - Winter 2022 17

ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures

1/19/2022 CSE 484 - Winter 2022 18

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the
fly
• Disclosing a single address can reveal the location of all code within a library,

depending on the ASLR implementation

1/19/2022 CSE 484 - Winter 2022 19

PointGuard

• Attack: overflow a function pointer so that it points to attack
code

• Idea: encrypt all pointers while in memory
• Generate a random key when program is executed

• Each pointer is XORed with this key when loaded from memory to
registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will dereference

to a “random” memory address

CSE 484 - Winter 2022

Normal Pointer Dereference

CSE 484 - Winter 2022

CPU

Memory Pointer
0x1234

Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]

PointGuard Dereference

CSE 484 - Winter 2022

[Cowan]

CPU

Memory Encrypted pointer
0x7239

Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786

Decrypt

Decrypts to
random value

0x9786

PointGuard Issues

• Must be very fast
• Pointer dereferences are very common

• Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values end up in

memory and can be overwritten there

• Attacker should not be able to modify the key
• Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?

CSE 484 - Winter 2022

Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at
function return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO
5000)

CSE 484 - Winter 2022

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

CSE 484 - Winter 2022

Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

CSE 484 - Winter 2022

Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484 - Winter 2022

