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Announcements

• Lab 1:
• Out

• Target 3 and 7 still extra credit (even though we now have working solutions) (still encourage 
everyone to do them)

• Quiz section this week: Definitely attend re: one of the targets! (Heap structures)

• Next week: Monday: I will be at the lecture hall (but still using Zoom)

• Next week: Wednesday: I will be at the lecture hall (but still using Zoom)

• Next week: Friday: Emily McReynolds via Zoom (everyone via Zoom)
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Recommended Reading

• It will be hard to do Lab 1 without:
• Reading (see course schedule):

• Smashing the Stack for Fun and Profit

• Exploiting Format String Vulnerabilities

• Attending section this week and next
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Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as 

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …
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Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-2004 

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004),  Linux since 2004 (check distribution), OS X 10.5+ 

(10.4 for stack but not heap), Android 2.3+
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Canvas In-Class Activity

• What might an attacker be able to accomplish even if they cannot 
execute code on the stack?
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What Does “Executable Space Protection” 
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space 
protection will not block control transfer!
→ return-to-libc exploits
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return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …
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return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺
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return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a 
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what?  Its value is under attacker’s control! 

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack
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Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks 

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”
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Return-Oriented Programming
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Defense: Run-Time Checking: StackGuard
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• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary
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Defense: Run-Time Checking: StackGuard
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• Embed “canaries” (stack cookies) in stack frames and verify 
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”
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StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a 
performance penalty
• For example, 8% for Apache Web server at one point in time
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Defeating StackGuard
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• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is 

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy 
BadPointer here



ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

1/19/2022 CSE 484 - Winter 2022 17



ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures
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Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s 
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the 
fly
• Disclosing a single address can reveal the location of all code within a library, 

depending on the ASLR implementation
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PointGuard

• Attack: overflow a function pointer so that it points to attack 
code

• Idea: encrypt all pointers while in memory
• Generate a random key when program is executed

• Each pointer is XORed with this key when loaded from memory to 
registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will dereference 

to a “random” memory address
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Normal Pointer Dereference

CSE 484  - Winter 2022

CPU

Memory Pointer
0x1234

Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
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Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]



PointGuard Dereference
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[Cowan]

CPU

Memory Encrypted pointer
0x7239

Data

1. Fetch pointer 
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0x1234

2. Access data referenced by pointer0x1234

Decrypt

0x1234 0x1340
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PointGuard Issues

• Must be very fast
• Pointer dereferences are very common

• Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values end up in 

memory and can be overwritten there

• Attacker should not be able to modify the key
• Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?
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Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at 
function return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO 
5000)
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Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t 
influence control flow.)
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Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”
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Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle
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