
CSE 484 / CSE M 584:
Buffer Overflows (Continued)

Winter 2022

Tadayoshi (Yoshi) Kohno

yoshi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Things Due:
• Homework #1: Due Thursday

• Research Readings (CSE M 584): Due Thursday (and every Thursday thereafter)

• Lab 1: Start forming groups of up to 3 people now (strongly encouraged to have
groups of 3)

CSE 484 / CSE M 584 - Winter 2022

First, Review slides from Friday

1/12/2022 CSE 484 - Winter 2022 3

Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses; grows and shrinks
as functions are called and return

1/12/2022 CSE 484 - Winter 2022 4

Text region Heap Stack

Addr 0x00...0 Addr 0xFF...F

Top Bottom

Stack Buffers

• Suppose Web server contains this function:

void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is
pushed onto the stack.

1/12/2022 CSE 484 - Winter 2022 5

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…

void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite
adjacent stack locations.

1/12/2022 CSE 484 - Winter 2022 6

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Executing Attack Code

• Suppose buffer contains attacker-created string
• For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be

executed, giving attacker a shell (“shellcode”)
• Root shell if the victim program is setuid root

1/12/2022 CSE 484 - Winter 2022 7

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the
location where the system expects to find return address

Caller’s framestr

Review: “End”

• “End” in quotes because although those were past slides, we have not
ended the review – we will continue to revisit the contents of the
earlier slides, just in slightly different ways

1/12/2022 CSE 484 - Winter 2022 8

Another Variant:
Function Pointer Overflow
• C uses function pointers for callbacks: if pointer to F is stored in

memory location P, then one can call F as (*P)(…)

1/12/2022 CSE 484 - Winter 2022 9

attack code

Buffer with attacker-supplied

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)

Other Overflow Targets

• Format strings in C
• We’ll walk through this one next

• Heap management structures used by malloc()
• More details in section

• Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺

1/12/2022 CSE 484 - Winter 2022 10

Variable Arguments in C

1/12/2022 CSE 484 - Winter 2022 11

• In C, can define a function with a variable number of
arguments

– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

%d,%i,%o,%u,%x,%X – integer argument
%s – string argument
%p – pointer argument (void *)
Several others

Format Strings in C

• Proper use of printf format string:
int foo = 1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

1/12/2022 CSE 484 - Winter 2022 12

What happens if buffer
contains format symbols

starting with % ???

Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time

1/12/2022 CSE 484 - Winter 2022 13

This is simplified code,
e.g., handles %d but not

%10d

Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);

1/12/2022 CSE 484 - Winter 2022 14

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Printf’s internal stack
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Printf’s internal stack
pointer starts here

6

Format Strings in C

• Proper use of printf format string:
int foo=1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

1/12/2022 CSE 484 - Winter 2022 15

• Proper use of printf format string:
int foo=1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”;

printf(buf);

// should’ve used printf(“%s”, buf);

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be

interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

Format Strings in C

1/12/2022 CSE 484 - Winter 2022 16

What happens if buffer
contains format symbols

starting with % ???

Viewing Memory

• %x format symbol tells printf to output data on stack

printf(“Here is an int: %x”,i);

• What if printf does not have an argument?

char buf[16]=“Here is an int: %x”;

printf(buf);

• Stack location pointed to by printf’s internal stack pointer will be interpreted as an int. (What if crypto key,
password, ...?)

• Or what about:

char buf[16]=“Here is a string: %s”;

printf(buf);

• Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a string

1/12/2022 CSE 484 - Winter 2022 17

Viewing Memory

• %x format symbol tells printf to output data on stack

printf(“Here is an int: %x”,i);

• What if printf does not have an argument?

char buf[16]=“Here is an int: %x”;

printf(buf);

• Stack location pointed to by printf’s internal stack pointer will be interpreted as an int. (What if crypto key,
password, ...?)

• Or what about:

char buf[16]=“Here is a string: %s”;

printf(buf);

• Stack location pointed to by printf’s internal stack pointer will be interpreted as a pointer to a string

1/12/2022 CSE 484 - Winter 2022 18

Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters that
have been printed

printf(“Overflow this!%n”,&myVar);

• Argument of printf is interpreted as destination address

• This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;

printf(buf);

• Stack location pointed to by printf’s internal stack pointer will be interpreted as
address into which the number of characters will be written.

1/12/2022 CSE 484 - Winter 2022 20

Summary of Printf Risks

• Printf takes a variable number of arguments
• E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
• E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”

• Can be used to advance printf’s internal stack pointer

• Can read memory
• E.g., printf(“%x”) will print in hex format whatever printf’s internal

stack pointer is pointing to at the time

• Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

1/12/2022 CSE 484 - Winter 2022 21

“Weird Machines”

• Way of thinking about exploits (the best way ☺)

• Treat each discrete side-effect as an ‘instruction’

• Synthesize a ‘program’ from these instructions

• This is now your exploit!

1/12/2022 CSE 484 - Winter 2022 22

How Can We Attack This? Breakout -> In-Class
Activity
foo() {

char buf[…];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??

1/12/2022 CSE 484 - Winter 2022 23

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

1/12/2022 CSE 484 - Winter 2022 24

RET“… attackString%n…”, attack code &RET

When %n happens, make sure the location
under printf’s internal stack pointer contains address
of RET; %n will write the number of characters
printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

Recommended Reading

• It will be hard to do Lab 1 without:
• Reading (see course schedule):

• Smashing the Stack for Fun and Profit

• Exploiting Format String Vulnerabilities

• Attending section this week and next

1/12/2022 CSE 484 - Winter 2022 25

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. …

1/12/2022 CSE 484 - Winter 2022 26

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-2004

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+

(10.4 for stack but not heap), Android 2.3+

1/12/2022 CSE 484 - Winter 2022 27

Canvas In-Class Activity

• What might an attacker be able to accomplish even if they cannot
execute code on the stack?

1/12/2022 CSE 484 - Winter 2022 28

What Does “Executable Space Protection”
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space
protection will not block control transfer!
→ return-to-libc exploits

1/12/2022 CSE 484 - Winter 2022 29

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

1/12/2022 CSE 484 - Winter 2022 30

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

1/12/2022 CSE 484 - Winter 2022 31

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

1/12/2022 CSE 484 - Winter 2022 32

Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”

1/12/2022 CSE 484 - Winter 2022 33

Return-Oriented Programming

1/12/2022 CSE 484 - Winter 2022 34

Defense: Run-Time Checking: StackGuard

1/12/2022 CSE 484 - Winter 2022 35

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

1/12/2022 CSE 484 - Winter 2022 36

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
• For example, 8% for Apache Web server at one point in time

1/12/2022 CSE 484 - Winter 2022 37

Defeating StackGuard

1/12/2022 CSE 484 - Winter 2022 38

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

1/12/2022 CSE 484 - Winter 2022 39

ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures

1/12/2022 CSE 484 - Winter 2022 40

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the
fly
• Disclosing a single address can reveal the location of all code within a library,

depending on the ASLR implementation

1/12/2022 CSE 484 - Winter 2022 41

