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Announcements

• Things Due:
– Ethics Form: Friday

– Homework #1: Due next Thursday

– Research Readings (CSE M 584): Due next Thursday (and every Thursday thereafter)

• Discussion Board:
– Ideally set up soon
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Last time…

• Threat models

– Assets

– Adversaries

– Vulnerabilities

– Threats

– Risks
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Electronic Voting Machine (~2003)
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Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Encrypted votes

Recorded votes

VoterPoll worker

Q1: Security goals? Assets?
Q2: Adversaries? Attack goals?



TOWARDS DEFENSES
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Approaches to Security

• Prevention
– Stop an attack

• Detection
– Detect an ongoing or past attack

• Response and Resilience 
– Respond to / recover from attacks

• The threat of a response may be enough to deter some 
attackers
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Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the weakest link,” and security 
can fail in many places

– No reason to attack the strongest part of a system if you can walk right around it.
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Attacker’s Asymmetric Advantage

CSE 484 / CSE M 584 - Winter 2022



Attacker’s Asymmetric Advantage

CSE 484 / CSE M 584 - Winter 2022

• Attacker only needs to win in one place 
• Defender’s response: Defense in depth



From Policy to Implementation

• After you’ve figured out what security means to your application, 
there are still challenges:
– Requirements bugs and oversights

• Incorrect or problematic goals

– Design bugs and oversights
• Poor use of cryptography
• Poor sources of randomness
• ...

– Implementation bugs and oversights
• Buffer overflow attacks
• ...

– Is the system usable?
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Many Participants

• Many parties involved
– System developers

– Companies deploying the system

– The end users

– The adversaries (possibly one of the above)

• Different parties have different goals
– System developers and companies may wish to optimize cost

– End users may desire security, privacy, and usability
• Related question: Do system developers / companies really understand the needs and values of all their users? Or all 

stakeholders who might be impacted by the system?

– The relationship between these goals is quite complex (e.g., will customers choose features or 
security?) (e.g., are there “non-obvious” stakeholders?)
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Better News

• There are a lot of defense mechanisms

– We’ll study some, but by no means all, in this course

• It’s important to understand their limitations

– “If you think cryptography will solve your problem, then you don’t 
understand cryptography… and you don’t understand your problem”   
-- Bruce Schneier
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SOFTWARE SECURITY
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Bugs, Vulnerabilities, and Exploits

• Bug

– Not working quite right

• Vulnerability

– A malfunction that can be used for an adversary’s goals

• Exploit

– The mechanical set of operations to make use of a vulnerability
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Adversarial Failures

• Software bugs are bad

– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit them!

– Intelligent adversaries:  Force bugs into “worst possible” conditions/states

– Intelligent adversaries:  Pick their targets
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Many Types of Vulnerabilities

• Memory corruption (e.g., buffer overflow)

• Type confusion (e.g., implicit cast)

• Input validation/sanitization errors (e.g., Log4j)

• Confused deputy (e.g., CSRF)

• Time-of-check-time-of-use 

• Side-channels
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Memory Corruption Bugs

• Buffer overflows bugs:  Big class of bugs

– Normal conditions:  Can sometimes cause systems to fail

– Adversarial conditions:  Attacker able to violate security of your system 
(control, obtain private information, ...)

• Stack, Heap both possibilities
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BUFFER OVERFLOWS
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A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist

– Convicted under Computer Fraud and Abuse Act, 
• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly measure 
the size of the Internet

• Due to a coding error, it created new copies as fast as it could and 
overloaded infected machines

• $10-100M worth of damage (in 1988)
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Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow attack
against a vulnerable version of fingerd on VAX systems

– By sending special string to finger daemon, worm caused it to execute code 
creating a new worm copy

Buffer overflows remain a common source of vulnerabilities and exploits 
today! 

(Especially in embedded systems.)
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Aside: Famous Internet Worms

• Morris worm (1988): overflow in fingerd

– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server
– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS
– Around 500,000 machines infected
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… And More

• Conficker (2008-09): overflow in Windows RPC

– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same Windows RPC overflow 
as Conficker

– Windows print spooler service

– Windows LNK shortcut display

– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as Stuxnet

– Targeted cyperespionage virus

• These days, worms are uncommon
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… And More

• Embedded systems

– E.g., UW automotive security work

• Formative and foundational for software security
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Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory 
(stack or heap)

• Typical situation:

– A function takes some input that it writes into a pre-allocated buffer.

– The developer forgets to check that the size of the input isn’t larger than the size 
of the buffer.

– Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution
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Stack Buffers
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• Suppose Web server contains this function
void func(char *str) {

char buf[126];

...

strcpy(buf,str);

...

}

• No bounds checking on strcpy()

• If str is longer than 126 bytes

– Program may crash

– Attacker may change program behavior

buf uh oh!



Example: Changing Flags
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• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;

char buf[126];

...

strcpy(buf,str);

...

}

• Authenticated variable non-zero when user has extra privileges

• Morris worm also overflowed a buffer to overwrite an authenticated 
flag in fingerd

buf authenticated11 ( :-) ! )



Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses; grows and shrinks as 
functions are called and return
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Text region Heap Stack

Addr 0x00...0 Addr 0xFF...F

Top Bottom



Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is 
pushed onto the stack.
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Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations.
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strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



Executing Attack Code

• Suppose buffer contains attacker-created string

– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be 

executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

1/7/2022 CSE 484 - Winter 2022 34

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his 
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the 
location where the system expects to find return address

Caller’s framestr



Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of 
attack code in the RET position

– The value in the RET position must point to the beginning of attack 
assembly code in the buffer

• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer will 
be when the function is called
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Problem: No Bounds Checking

• strcpy does not check input size

– strcpy(buf, str) simply copies memory contents into buf starting from *str until 
“\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe

– strcpy(char *dest, const char *src)

– strcat(char *dest, const char *src)

– gets(char *s)

– scanf(const char *format, …)

– printf(const char *format, …) 
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Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)   

strncat(record,cpw,MAX_STRING_LEN-1);
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Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)



Breakout Activity

Canvas -> Quizzes
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What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)

buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {

if (argc==2) 

mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change pointer to previous 
stack frame
– On little-endian architecture, make it point into buffer

– RET for previous function will be read from buffer!
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Breakout Activity

Canvas -> Quizzes
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Frame Pointer Overflow
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK CODE



Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is stored 
in memory location P, then one can call F as (*P)(…)
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attack code

Buffer with attacker-supplied 

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)



Other Overflow Targets

• Format strings in C

– We’ll walk through this later

• Heap management structures used by malloc() 

– More details in section

– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺
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