
CSE 484 / CSE M 584: 
Defenses & Software Security & Buffer Overflows

Winter 2022

Tadayoshi (Yoshi) Kohno

yoshi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan 
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...



Announcements

• Things Due:
– Ethics Form: Friday

– Homework #1: Due next Thursday

– Research Readings (CSE M 584): Due next Thursday (and every Thursday thereafter)

• Discussion Board:
– Ideally set up soon

CSE 484 / CSE M 584 - Winter 2022



Last time…

• Threat models

– Assets

– Adversaries

– Vulnerabilities

– Threats

– Risks

1/7/2022 CSE 484 - Winter 2022 3



Electronic Voting Machine (~2003)

CSE 484 / CSE M 584 - Winter 2022
si.edu

si.edu

Voter token

Tabulator

Voter token

Interactively vote

Ballot definition file

Encrypted votes

Recorded votes

VoterPoll worker

Q1: Security goals? Assets?
Q2: Adversaries? Attack goals?



TOWARDS DEFENSES

CSE 484 / CSE M 584 - Winter 2022



Approaches to Security

• Prevention
– Stop an attack

• Detection
– Detect an ongoing or past attack

• Response and Resilience 
– Respond to / recover from attacks

• The threat of a response may be enough to deter some 
attackers

CSE 484 / CSE M 584 - Winter 2022



Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the weakest link,” and security 
can fail in many places

– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 / CSE M 584 - Winter 2022



Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the weakest link,” and security 
can fail in many places

– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 / CSE M 584 - Winter 2022



Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the weakest link,” and security 
can fail in many places

– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 / CSE M 584 - Winter 2022



Whole System is Critical

• Securing a system involves a whole-system view

– Cryptography

– Implementation

– People

– Physical security

– Everything in between

• This is because “security is only as strong as the weakest link,” and security 
can fail in many places

– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 / CSE M 584 - Winter 2022



Attacker’s Asymmetric Advantage

CSE 484 / CSE M 584 - Winter 2022



Attacker’s Asymmetric Advantage

CSE 484 / CSE M 584 - Winter 2022

• Attacker only needs to win in one place 
• Defender’s response: Defense in depth



From Policy to Implementation

• After you’ve figured out what security means to your application, 
there are still challenges:
– Requirements bugs and oversights

• Incorrect or problematic goals

– Design bugs and oversights
• Poor use of cryptography
• Poor sources of randomness
• ...

– Implementation bugs and oversights
• Buffer overflow attacks
• ...

– Is the system usable?

CSE 484 / CSE M 584 - Winter 2022



Many Participants

• Many parties involved
– System developers

– Companies deploying the system

– The end users

– The adversaries (possibly one of the above)

• Different parties have different goals
– System developers and companies may wish to optimize cost

– End users may desire security, privacy, and usability
• Related question: Do system developers / companies really understand the needs and values of all their users? Or all 

stakeholders who might be impacted by the system?

– The relationship between these goals is quite complex (e.g., will customers choose features or 
security?) (e.g., are there “non-obvious” stakeholders?)

CSE 484 / CSE M 584 - Winter 2022



Better News

• There are a lot of defense mechanisms

– We’ll study some, but by no means all, in this course

• It’s important to understand their limitations

– “If you think cryptography will solve your problem, then you don’t 
understand cryptography… and you don’t understand your problem”   
-- Bruce Schneier

CSE 484 / CSE M 584 - Winter 2022



SOFTWARE SECURITY

1/7/2022 CSE 484 - Winter 2022 16



Bugs, Vulnerabilities, and Exploits

• Bug

– Not working quite right

• Vulnerability

– A malfunction that can be used for an adversary’s goals

• Exploit

– The mechanical set of operations to make use of a vulnerability

1/7/2022 CSE 484 - Winter 2022 17



Adversarial Failures

• Software bugs are bad

– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit them!

– Intelligent adversaries:  Force bugs into “worst possible” conditions/states

– Intelligent adversaries:  Pick their targets

1/7/2022 CSE 484 - Winter 2022 19



Many Types of Vulnerabilities

• Memory corruption (e.g., buffer overflow)

• Type confusion (e.g., implicit cast)

• Input validation/sanitization errors (e.g., Log4j)

• Confused deputy (e.g., CSRF)

• Time-of-check-time-of-use 

• Side-channels

1/7/2022 CSE 484 - Winter 2022 20



Memory Corruption Bugs

• Buffer overflows bugs:  Big class of bugs

– Normal conditions:  Can sometimes cause systems to fail

– Adversarial conditions:  Attacker able to violate security of your system 
(control, obtain private information, ...)

• Stack, Heap both possibilities

1/7/2022 CSE 484 - Winter 2022 21



BUFFER OVERFLOWS

1/7/2022 CSE 484 - Winter 2022 22



A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist

– Convicted under Computer Fraud and Abuse Act, 
• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly measure 
the size of the Internet

• Due to a coding error, it created new copies as fast as it could and 
overloaded infected machines

• $10-100M worth of damage (in 1988)

1/7/2022 CSE 484 - Winter 2022 23



Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow attack
against a vulnerable version of fingerd on VAX systems

– By sending special string to finger daemon, worm caused it to execute code 
creating a new worm copy

Buffer overflows remain a common source of vulnerabilities and exploits 
today! 

(Especially in embedded systems.)

1/7/2022 CSE 484 - Winter 2022 24



Aside: Famous Internet Worms

• Morris worm (1988): overflow in fingerd

– 6,000 machines infected

• CodeRed (2001): overflow in MS-IIS server
– 300,000 machines infected in 14 hours

• SQL Slammer (2003): overflow in MS-SQL server
– 75,000 machines infected in 10 minutes (!!)

• Sasser (2005): overflow in Windows LSASS
– Around 500,000 machines infected

1/7/2022 CSE 484 - Winter 2022 25



… And More

• Conficker (2008-09): overflow in Windows RPC

– Around 10 million machines infected (estimates vary)

• Stuxnet (2009-10): several zero-day overflows + same Windows RPC overflow 
as Conficker

– Windows print spooler service

– Windows LNK shortcut display

– Windows task scheduler

• Flame (2010-12): same print spooler and LNK overflows as Stuxnet

– Targeted cyperespionage virus

• These days, worms are uncommon

1/7/2022 CSE 484 - Winter 2022 26



… And More

• Embedded systems

– E.g., UW automotive security work

• Formative and foundational for software security

1/7/2022 CSE 484 - Winter 2022 27



Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory 
(stack or heap)

• Typical situation:

– A function takes some input that it writes into a pre-allocated buffer.

– The developer forgets to check that the size of the input isn’t larger than the size 
of the buffer.

– Uh oh.
• “Normal” bad input: crash

• “Adversarial” bad input : take control of execution

1/7/2022 CSE 484 - Winter 2022 28



Stack Buffers

1/7/2022 CSE 484 - Winter 2022 29

• Suppose Web server contains this function
void func(char *str) {

char buf[126];

...

strcpy(buf,str);

...

}

• No bounds checking on strcpy()

• If str is longer than 126 bytes

– Program may crash

– Attacker may change program behavior

buf uh oh!



Example: Changing Flags

1/7/2022 CSE 484 - Winter 2022 30

• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;

char buf[126];

...

strcpy(buf,str);

...

}

• Authenticated variable non-zero when user has extra privileges

• Morris worm also overflowed a buffer to overwrite an authenticated 
flag in fingerd

buf authenticated11 ( :-) ! )



Memory Layout

• Text region: Executable code of the program

• Heap: Dynamically allocated data

• Stack: Local variables, function return addresses; grows and shrinks as 
functions are called and return

1/7/2022 CSE 484 - Winter 2022 31

Text region Heap Stack

Addr 0x00...0 Addr 0xFF...F

Top Bottom



Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is 
pushed onto the stack.

1/7/2022 CSE 484 - Winter 2022 32

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];

strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations.

1/7/2022 CSE 484 - Winter 2022 33

strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



Executing Attack Code

• Suppose buffer contains attacker-created string

– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be 

executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

1/7/2022 CSE 484 - Winter 2022 34

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into his 
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the 
location where the system expects to find return address

Caller’s framestr



Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of 
attack code in the RET position

– The value in the RET position must point to the beginning of attack 
assembly code in the buffer

• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer will 
be when the function is called

1/7/2022 CSE 484 - Winter 2022 35



Problem: No Bounds Checking

• strcpy does not check input size

– strcpy(buf, str) simply copies memory contents into buf starting from *str until 
“\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe

– strcpy(char *dest, const char *src)

– strcat(char *dest, const char *src)

– gets(char *s)

– scanf(const char *format, …)

– printf(const char *format, …) 

1/7/2022 CSE 484 - Winter 2022 36



Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);

strcat(record,”:”)   

strncat(record,cpw,MAX_STRING_LEN-1);

1/7/2022 CSE 484 - Winter 2022 37

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)



Breakout Activity

Canvas -> Quizzes

1/7/2022 CSE 484 - Winter 2022 38



What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)

buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {

if (argc==2) 

mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change pointer to previous 
stack frame
– On little-endian architecture, make it point into buffer

– RET for previous function will be read from buffer!
1/7/2022 CSE 484 - Winter 2022 40



Breakout Activity

Canvas -> Quizzes

1/7/2022 CSE 484 - Winter 2022 41



Frame Pointer Overflow

1/7/2022 CSE 484 - Winter 2022 43

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK CODE



Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is stored 
in memory location P, then one can call F as (*P)(…)

1/7/2022 CSE 484 - Winter 2022 44

attack code

Buffer with attacker-supplied 

input string

Callback

pointer

Legitimate function F

overflow

(elsewhere in memory)



Other Overflow Targets

• Format strings in C

– We’ll walk through this later

• Heap management structures used by malloc() 

– More details in section

– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 ☺

1/7/2022 CSE 484 - Winter 2022 45


