
CSE 484 / CSE M 584:
Buffer Overflow Defenses +

Misc Software Security

Fall 2022

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Lab 1
–Part 1a due Friday Saturday
• Outage with unknown cause last night

– If you haven’t created a group and gotten access, please
do so ASAP

–Turning things in: handin.sh, then submit to Canvas
• See lab1.pdf description again

CSE 484 - Fall 2022

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
– Put malicious code at a predictable location in memory, usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt or check integrity of pointers
4. Address space layout randomization
5. Code analysis
6. …

CSE 484 - Fall 2022

Defense: Run-Time Checking: StackGuard

CSE 484 - Fall 2022

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stackbuf sfp ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

CSE 484 - Fall 2022

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stackbuf sfp ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation
• Checking canary integrity prior to every function return causes a

performance penalty
– For example, 8% for Apache Web server at one point in time

CSE 484 - Fall 2022

Defeating StackGuard

CSE 484 - Fall 2022

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is

sufficient
• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)

– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
– Base of executable region
– Position of stack
– Position of heap
– Position of libraries

• Introduced by Linux PaX project in 2001
• Adopted by OpenBSD in 2003
• Adopted by Linux in 2005

CSE 484 - Fall 2022

ASLR: Address Space Randomization

• Deployment (examples)
– Linux kernel since 2.6.12 (2005+)
– Android 4.0+
– iOS 4.3+ ; OS X 10.5+
– Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or
addresses)

• ASLR more effective on 64-bit architectures

CSE 484 - Fall 2022

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for
adversary’s code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out
memory on the fly
– Disclosing a single address can reveal the location of all code

within a library, depending on the ASLR implementation

CSE 484 - Fall 2022

Defense: Shadow Stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
– A hidden stack

• On function call/return
– Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at function
return

• 2020/2021 Hardware Support emerged (e.g., Intel Tiger Lake, AMD Ryzen PRO 5000)

CSE 484 - Fall 2022

Challenges With Shadow Stacks

• Where do we put the shadow stack?
– Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

CSE 484 - Fall 2022

Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues J)

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”

CSE 484 - Fall 2022

Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSE 484 - Fall 2022

Other Common Software Security Issues…

CSE 484 - Fall 2022

Another Type of Vulnerability

• Consider this code:

CSE 484 - Fall 2022

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);
typedef unsigned int size_t;

Another Example

CSE 484 - Fall 2022

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Canvas -> Quizzes -> Oct 10

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Implicit Cast

• Consider this code:

CSE 484 - Fall 2022

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);
typedef unsigned int size_t;

If len is negative, may
copy huge amounts of

input into buf.

Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result: Allocate a 4-byte buffer, then read a lot of

data into that buffer.

CSE 484 - Fall 2022

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

• Consider this code:

• Goal: Write to file only with permission
• What can go wrong?

CSE 484 - Fall 2022

if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));

TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Time of Use”

• Goal: Write to file only with permission
• Attacker (in another program) can change meaning

of “file” between access and open:
symlink("/etc/passwd", "file");

CSE 484 - Fall 2022

if (access(“file”, W_OK) != 0) {
exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);
write(fd, buffer, sizeof(buffer));

