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Announcements

• Things Due:
– Homework #1: Due Friday (tomorrow)

• Lab 1 out
– If you haven’t created a group and gotten access, please do so ASAP

• It will be hard to do Lab 1 without:
– Reading (see course schedule):

• Smashing the Stack for Fun and Profit
• Exploiting Format String Vulnerabilities

– Attending section this week and next
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Review: Printf() and the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Printf’s internal stack 

pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Printf’s internal stack 

pointer starts here
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Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal stack pointer is 
pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location specified by whatever 

printf’s internal SP is pointing to at the time
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How Can We Attack This?

foo() {
char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??
Canvas -> Quizzes -> Oct 7
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then 
printf will expect to find 
arguments here…

Note: Different compilers / 
compiler options / 

architectures might vary



Using %n to Overwrite Return Address
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RET“… attackString%n…”, attack code &RET

When %n happens, make sure the location 
under printf’s internal stack pointer contains 
address of RET; %n will write the number of 
characters printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be 
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf

to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “   10”

That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte. 

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:



Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
– Put malicious code at a predictable location in memory, usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code

2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization

5. Code analysis
6. …
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Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
– Example: Microsoft’s Data Execution Prevention (DEP)
– This blocks many code injection exploits

• Hardware support
– AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-

2004 CPUs)
– Makes memory page non-executable

• Widely deployed
– Windows XP SP2+ (2004),  Linux since 2004 (check distribution), OS X 

10.5+ (10.4 for stack but not heap), Android 2.3+
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Question

What might an attacker be able to accomplish even if they 
cannot execute code on the stack?
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What Does “Executable Space Protection” Not 
Prevent?

• Can still corrupt stack …
– … or function pointers
– … or critical data on the heap

• As long as RET points into existing code, executable space 
protection will not block control transfer!

à return-to-libc exploits

10/6/22 CSE 484 - Winter 2022 10



return-to-libc

• Overwrite saved ret (IP) with address of any library routine
– Arrange stack to look like arguments

• Does not look like a huge threat
– … Right?
– We can call any function we want!
– Say, exec J

10/6/22 CSE 484 - Winter 2022 11



return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a library 
routine

• Any existing instruction in the code image is fine
– Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
– Execution will be transferred… to where?
– Read the word pointed to by stack pointer (SP)

• Guess what?  Its value is under attacker’s control! 

– Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

– Increment SP to point to the next word on the stack
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Chaining RETs

• Can chain together sequences ending in RET
– Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks 

exploitation technique” (2005)

• What is this good for?
• Answer [Shacham et al.]: everything
– Turing-complete language
– Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

– Attack can perform arbitrary computation using no injected code at all –
return-oriented programming
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Return-Oriented Programming
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