
CSE 484 / CSE M 584:
Buffer Overflows (continued) + Defenses

Fall 2022

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Things Due:
– Homework #1: Due Friday (tomorrow)

• Lab 1 out
– If you haven’t created a group and gotten access, please do so ASAP

• It will be hard to do Lab 1 without:
– Reading (see course schedule):

• Smashing the Stack for Fun and Profit
• Exploiting Format String Vulnerabilities

– Attending section this week and next

CSE 484 / CSE M 584 - Fall 2022

Review: Printf() and the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);

CSE 484 / CSE M 584 - Fall 2022

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Printf’s internal stack

pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Printf’s internal stack

pointer starts here

6

Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal stack pointer is
pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location specified by whatever

printf’s internal SP is pointing to at the time

CSE 484 / CSE M 584 - Fall 2022

How Can We Attack This?

foo() {
char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??
Canvas -> Quizzes -> Oct 7

CSE 484 / CSE M 584 - Fall 2022

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Note: Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

CSE 484 / CSE M 584 - Fall 2022

RET“… attackString%n…”, attack code &RET

When %n happens, make sure the location
under printf’s internal stack pointer contains
address of RET; %n will write the number of
characters printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf

to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”

That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
– Put malicious code at a predictable location in memory, usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code

2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization

5. Code analysis
6. …

10/6/22 CSE 484 - Winter 2022 7

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
– Example: Microsoft’s Data Execution Prevention (DEP)
– This blocks many code injection exploits

• Hardware support
– AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-

2004 CPUs)
– Makes memory page non-executable

• Widely deployed
– Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X

10.5+ (10.4 for stack but not heap), Android 2.3+

10/6/22 CSE 484 - Winter 2022 8

Question

What might an attacker be able to accomplish even if they
cannot execute code on the stack?

10/6/22 CSE 484 - Winter 2022 9

What Does “Executable Space Protection” Not
Prevent?

• Can still corrupt stack …
– … or function pointers
– … or critical data on the heap

• As long as RET points into existing code, executable space
protection will not block control transfer!

à return-to-libc exploits

10/6/22 CSE 484 - Winter 2022 10

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
– Arrange stack to look like arguments

• Does not look like a huge threat
– … Right?
– We can call any function we want!
– Say, exec J

10/6/22 CSE 484 - Winter 2022 11

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a library
routine

• Any existing instruction in the code image is fine
– Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
– Execution will be transferred… to where?
– Read the word pointed to by stack pointer (SP)

• Guess what? Its value is under attacker’s control!

– Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

– Increment SP to point to the next word on the stack

10/6/22 CSE 484 - Winter 2022 12

Chaining RETs

• Can chain together sequences ending in RET
– Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?
• Answer [Shacham et al.]: everything
– Turing-complete language
– Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

– Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

10/6/22 CSE 484 - Winter 2022 13

Return-Oriented Programming

10/6/22 CSE 484 - Winter 2022 14

