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Announcements

• Things Due:
– Homework #1: Due Friday
– Research Readings (CSE M 584): Due Thursday(s)

• TA office hours scheduled
– Tue 3:30-4:30pm, CSE (Allen) 218 - Aroosh and Basia
– Wed 3:30-4:30pm, Zoom (see Canvas for link) - David, Tim, and Wenqing
– Thurs 10:30-11:30am, CSE (Allen) 218 - Noah and William
– Fri 2:00-3:00pm, CSE2 (Gates) 152 - Julia and Theo

• Lab 1 out shortly
– I recommend you tr to create accounts before section tomorrow
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Last Time: “Standard” Buffer Overflows

• Memory pointed to by str is copied onto stack…
void foo(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite 
adjacent stack locations.
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strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



Review: Stack Buffers – bar() calls foo()

void bar(char *ptr) {
func(ptr);
ptr++;

}

void foo(char *str) {
char buf[126];
strcpy(buf,str);

}
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

ret/IPSaved FP ptr

Args

Note: Toy example, functions not useful

Note: Exact pointer locations may vary by 
architecture; this description focuses on 
high-level ideas 



Review: Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)   
strncat(record,cpw,MAX_STRING_LEN-1);
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MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer



What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {
if (argc==2) 

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to 
previous stack frame
– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!
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Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i; 

for (i=0; i<=512; i++)
buffer[i] = input[i]; 

}

void main(int argc, char *argv[]) {
if (argc==2) 

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!
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This will copy 513
characters into
buffer. Oops!

• 1-byte overflow: can’t change RET, but can change pointer to 
previous stack frame…



Frame Pointer Overflow
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP ATTACK CODE



Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is 
stored in memory location P, then one can call F as (*P)(…)
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attack code

Buffer with attacker-supplied 
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)



Other Overflow Targets

• Format strings in C
– We’ll walk through this one next

• Heap management structures used by malloc() 
– More details in section
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 J
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Variable Arguments in C

• In C, can define a function with a variable number of arguments
– Example: void printf(const char* format, …)

• Examples of usage:

CSE 484 / CSE M 584 - Fall 2022

Format specification encoded by special % characters:

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others



Format Strings in C

• Proper use of printf format string:
int foo = 1234; 

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 
foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”; 
printf(buf);
// should’ve used printf(“%s”, buf);

CSE 484 / CSE M 584 - Fall 2022

What happens if buffer 
contains format symbols 

starting with % ???



(Simplified) Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time
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printf has an internal
stack pointer



Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Printf’s internal stack 
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Printf’s internal stack 
pointer starts here

6



Format Strings in C

• Proper use of printf format string:
int foo = 1234; 

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print: 
foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”; 
printf(buf);
// should’ve used printf(“%s”, buf);
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What happens if buffer 
contains format symbols 

starting with % ???

If the buffer contains format symbols starting with %, the 
location pointed to by printf’s internal stack pointer will be 

interpreted as an argument of printf.  

This can be exploited to move printf’s internal stack pointer!



Viewing Memory
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• %x format symbol tells printf to output data on stack
printf(“Here is an int:  %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int:  %x”; 
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as an int.  (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string:  %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as a pointer to a string



Viewing Memory
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• %x format symbol tells printf to output data on stack
printf(“Here is an int:  %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int:  %x”; 
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as an int.  (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string:  %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as a pointer to a string



Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters 
that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpreted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted 
as address into which the number of characters will be written.
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Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal stack pointer is 
pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location specified by whatever 

printf’s internal SP is pointing to at the time
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How Can We Attack This?
foo() {

char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??
Canvas -> Quizzes -> Oct 7
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ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then 
printf will expect to find 
arguments here…

Note: Different compilers / 
compiler options / 

architectures might vary



Using %n to Overwrite Return Address
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RET“… attackString%n…”, attack code &RET

When %n happens, make sure the location 
under printf’s internal stack pointer contains 
address of RET; %n will write the number of 
characters printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be 
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.
Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “   10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte. 

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:



Recommended Reading

• It will be hard to do Lab 1 without:
–Reading (see course schedule):
• Smashing the Stack for Fun and Profit
• Exploiting Format String Vulnerabilities

–Attending section this week and next
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