
CSE 484 / CSE M 584:
Buffer Overflows (continued)

Fall 2022

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Things Due:
– Homework #1: Due Friday
– Research Readings (CSE M 584): Due Thursday(s)

• TA office hours scheduled
– Tue 3:30-4:30pm, CSE (Allen) 218 - Aroosh and Basia
– Wed 3:30-4:30pm, Zoom (see Canvas for link) - David, Tim, and Wenqing
– Thurs 10:30-11:30am, CSE (Allen) 218 - Noah and William
– Fri 2:00-3:00pm, CSE2 (Gates) 152 - Julia and Theo

• Lab 1 out shortly
– I recommend you tr to create accounts before section tomorrow

CSE 484 / CSE M 584 - Fall 2022

Last Time: “Standard” Buffer Overflows

• Memory pointed to by str is copied onto stack…
void foo(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite
adjacent stack locations.

CSE 484 / CSE M 584 - Fall 2022 3

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Review: Stack Buffers – bar() calls foo()

void bar(char *ptr) {
func(ptr);
ptr++;

}

void foo(char *str) {
char buf[126];
strcpy(buf,str);

}

CSE 484 / CSE M 584 - Fall 2022

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

ret/IPSaved FP ptr

Args

Note: Toy example, functions not useful

Note: Exact pointer locations may vary by
architecture; this description focuses on
high-level ideas

Review: Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

CSE 484 / CSE M 584 - Fall 2022 5

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to
previous stack frame
– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 / CSE M 584 - Fall 2022 6

Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 / CSE M 584 - Fall 2022 7

This will copy 513
characters into
buffer. Oops!

• 1-byte overflow: can’t change RET, but can change pointer to
previous stack frame…

Frame Pointer Overflow

CSE 484 / CSE M 584 - Fall 2022

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP ATTACK CODE

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is
stored in memory location P, then one can call F as (*P)(…)

CSE 484 / CSE M 584 - Fall 2022

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)

Other Overflow Targets

• Format strings in C
– We’ll walk through this one next

• Heap management structures used by malloc()
– More details in section
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 J

CSE 484 / CSE M 584 - Fall 2022

Variable Arguments in C

• In C, can define a function with a variable number of arguments
– Example: void printf(const char* format, …)

• Examples of usage:

CSE 484 / CSE M 584 - Fall 2022

Format specification encoded by special % characters:

• %d,%i,%o,%u,%x,%X – integer argument
• %s – string argument
• %p – pointer argument (void *)
• Several others

Format Strings in C

• Proper use of printf format string:
int foo = 1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:
foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

CSE 484 / CSE M 584 - Fall 2022

What happens if buffer
contains format symbols

starting with % ???

(Simplified) Implementation of Variable Args

• Special functions va_start, va_arg, va_end compute arguments at run-time

CSE 484 / CSE M 584 - Fall 2022

printf has an internal
stack pointer

Closer Look at the Stack

printf(“Numbers: %d,%d”, 5, 6);

printf(“Numbers: %d,%d”);

CSE 484 / CSE M 584 - Fall 2022

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP..

Local variables

&str 5

Args

Printf’s internal stack
pointer starts here

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP…

Local variables

&str

Args

Printf’s internal stack
pointer starts here

6

Format Strings in C

• Proper use of printf format string:
int foo = 1234;

printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:
foo = 1234 in decimal, 4D2 in hex

• Unsafe use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

CSE 484 / CSE M 584 - Fall 2022

What happens if buffer
contains format symbols

starting with % ???

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be

interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

Viewing Memory

CSE 484 / CSE M 584 - Fall 2022

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

Viewing Memory

CSE 484 / CSE M 584 - Fall 2022

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

Writing Stack with Format Strings

• %n format symbol tells printf to write the number of characters
that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpreted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be interpreted
as address into which the number of characters will be written.

CSE 484 / CSE M 584 - Fall 2022

Summary of Printf Risks

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal stack pointer is
pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location specified by whatever

printf’s internal SP is pointing to at the time

CSE 484 / CSE M 584 - Fall 2022

How Can We Attack This?
foo() {

char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??
Canvas -> Quizzes -> Oct 7

CSE 484 / CSE M 584 - Fall 2022

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Note: Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

CSE 484 / CSE M 584 - Fall 2022

RET“… attackString%n…”, attack code &RET

When %n happens, make sure the location
under printf’s internal stack pointer contains
address of RET; %n will write the number of
characters printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.
Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

Recommended Reading

• It will be hard to do Lab 1 without:
–Reading (see course schedule):
• Smashing the Stack for Fun and Profit
• Exploiting Format String Vulnerabilities

–Attending section this week and next

CSE 484 / CSE M 584 - Fall 2022

