
CSE 484 / CSE M 584:
Defenses, Software Security, Buffer Overflows

Fall 2022

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Things Due:
– Ethics Form: Due today!
– Homework #1: Due Friday
– Research Readings (CSE M 584): Due Thursday (and every Thursday

thereafter)

CSE 484 - Fall 2022 2

TOWARDS DEFENSES

CSE 484 - Fall 2022 3

Approaches to Security

• Prevention
– Stop an attack

• Detection
– Detect an ongoing or past attack

• Response and Resilience
– Respond to / recover from attacks

• The threat of a response may be enough to deter some
attackers

CSE 484 - Fall 2022 4

Whole System is Critical

• Securing a system involves a whole-system view
– Cryptography
– Implementation
– People
– Physical security
– Everything in between

• This is because “security is only as strong as the weakest link,” and
security can fail in many places
– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 - Fall 2022 5

Whole System is Critical

• Securing a system involves a whole-system view
– Cryptography
– Implementation
– People
– Physical security
– Everything in between

• This is because “security is only as strong as the weakest link,” and
security can fail in many places
– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 - Fall 2022 6

Whole System is Critical

• Securing a system involves a whole-system view
– Cryptography
– Implementation
– People
– Physical security
– Everything in between

• This is because “security is only as strong as the weakest link,” and
security can fail in many places
– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 - Fall 2022 7

Whole System is Critical

• Securing a system involves a whole-system view
– Cryptography
– Implementation
– People
– Physical security
– Everything in between

• This is because “security is only as strong as the weakest link,” and
security can fail in many places
– No reason to attack the strongest part of a system if you can walk right around it.

CSE 484 - Fall 2022 8

Attacker’s Asymmetric Advantage

CSE 484 - Fall 2022 9

Attacker’s Asymmetric Advantage

CSE 484 - Fall 2022

• Attacker only needs to win in one place
• Defender’s response: Defense in depth

10

From Policy to Implementation

• After you’ve figured out what security means to your
application, there are still challenges:
– Requirements bugs and oversights

• Incorrect or problematic goals
– Design bugs and oversights

• Poor use of cryptography
• Poor sources of randomness
• ...

– Implementation bugs and oversights
• Buffer overflow attacks
• ...

– Is the system usable?

CSE 484 - Fall 2022 11

Many Participants

• Many parties involved
– System developers
– Companies deploying the system
– The end users
– The adversaries (possibly one of the above)

• Different parties have different goals
– System developers and companies may wish to optimize cost
– End users may desire security, privacy, and usability
– Different users/stakeholders may have different needs
– The relationship between these goals is quite complex (e.g., will customers choose features

or security?) (e.g., are there “non-obvious” stakeholders?)

CSE 484 - Fall 2022 12

Better News

• There are a lot of defense mechanisms
– We’ll study some, but by no means all, in this course

• It’s important to understand their limitations
– “If you think cryptography will solve your problem, then you don’t

understand cryptography… and you don’t understand your
problem” -- Bruce Schneier

CSE 484 - Fall 2022 13

SOFTWARE SECURITY

CSE 484 - Fall 2022 14

Bugs, Vulnerabilities, and Exploits

• Bug
– Not working quite right

• Vulnerability
– A malfunction that can be used for an adversary’s goals

• Exploit
– The mechanical set of operations to make use of a vulnerability

CSE 484 - Fall 2022 15

Adversarial Failures

• Software bugs are bad
– Consequences can be serious

• Even worse when an intelligent adversary wishes to exploit
them!
– Intelligent adversaries: Force bugs into “worst possible”

conditions/states
– Intelligent adversaries: Pick their targets

CSE 484 - Fall 2022 16

Memory Corruption Bugs

• Buffer overflows bugs: Big class of bugs
– Normal conditions: Can sometimes cause systems to fail
– Adversarial conditions: Attacker able to violate security of your system

(control, obtain private information, ...)

• Stack, Heap both possibilities

CSE 484 - Fall 2022 18

BUFFER OVERFLOWS

CSE 484 - Fall 2022 19

A Bit of History: Morris Worm

• Worm was released in 1988 by Robert Morris
– Graduate student at Cornell, son of NSA chief scientist
– Convicted under Computer Fraud and Abuse Act,

• 3 years probation and 400 hours of community service

– Now an EECS professor at MIT

• Worm was intended to propagate slowly and harmlessly
measure the size of the Internet

• Due to a coding error, it created new copies as fast as it could
and overloaded infected machines

• $10-100M worth of damage (in 1988)

CSE 484 - Fall 2022 20

Morris Worm and Buffer Overflow

• One of the worm’s propagation techniques was a buffer overflow
attack against a vulnerable version of fingerd on VAX systems
– By sending special string to finger daemon, worm caused it to execute code

creating a new worm copy

Buffer overflows remain a common source of
vulnerabilities and exploits today!
(Especially in embedded systems.)

CSE 484 - Fall 2022 21

Attacks on Memory Buffers

• Buffer is a pre-defined data storage area inside computer memory
(stack or heap)

• Typical situation:
– A function takes some input that it writes into a pre-allocated buffer.
– The developer forgets to check that the size of the input isn’t larger than the

size of the buffer.
– Uh oh.

• “Normal” bad input: crash
• “Adversarial” bad input : take control of execution

CSE 484 - Fall 2022 25

Stack Buffers

CSE 484 - Fall 2022 26

• Suppose Web server contains this function
void func(char *str) {

char buf[126];
...
strcpy(buf,str);
...

}

• No bounds checking on strcpy()
• If str is longer than 126 bytes
– Program may crash
– Attacker may change program behavior

buf uh oh!

Example: Changing Flags

CSE 484 - Fall 2022 27

• Suppose Web server contains this function
void func(char *str) {

byte auth = 0;
char buf[126];
...
strcpy(buf,str);
...

}

• Authenticated variable non-zero when user has extra privileges
• Morris worm also overflowed a buffer to overwrite an authenticated

flag in fingerd

buf authenticated11 (:-) !)

Memory Layout

• Text region: Executable code of the program
• Heap: Dynamically allocated data
• Stack: Local variables, function return addresses; grows and shrinks

as functions are called and return

CSE 484 - Fall 2022 28

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

Stack Buffers

• Suppose Web server contains this function:
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• When this function is invoked, a new frame (activation record) is
pushed onto the stack.

CSE 484 - Fall 2022 29

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args

What if Buffer is Overstuffed?

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into buffer, it will overwrite
adjacent stack locations.

CSE 484 - Fall 2022 30

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Executing Attack Code

• Suppose buffer contains attacker-created string
– For example, str points to a string received from the network as the URL

• When function exits, code in the buffer will be
executed, giving attacker a shell (“shellcode”)
– Root shell if the victim program is setuid root

CSE 484 - Fall 2022 31

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly instructions into their
input string, e.g., binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back into the buffer appears in the
location where the system expects to find return address

Caller’s framestr

Buffer Overflows Can Be Tricky…

• Overflow portion of the buffer must contain correct address of
attack code in the RET position
– The value in the RET position must point to the beginning of attack

assembly code in the buffer
• Otherwise application will (probably) crash with segfault

– Attacker must correctly guess in which stack position his/her buffer
will be when the function is called

CSE 484 - Fall 2022 32

Problem: No Bounds Checking

• strcpy does not check input size
– strcpy(buf, str) simply copies memory contents into buf starting from *str

until “\0” is encountered, ignoring the size of area allocated to buf

• Many C library functions are unsafe
– strcpy(char *dest, const char *src)
– strcat(char *dest, const char *src)
– gets(char *s)
– scanf(const char *format, …)
– printf(const char *format, …)

CSE 484 - Fall 2022 33

Does Bounds Checking Help?

• strncpy(char *dest, const char *src, size_t n)
– For strncpy (unlike strcpy), no more than n characters will be copied from *src to *dest

• Programmer has to supply the right value of n

• Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

• Published fix:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

CSE 484 - Fall 2022 34

Copies username (“user”) into buffer
(“record”), then appends “:” and hashed
password (“cpw”)

In-Class Activity

Canvas -> Quizzes -> Oct 3

(This is the first one that will be graded.
Reminder that you have 5 “freebies” for the quarter.)

CSE 484 - Fall 2022 35

Misuse of strncpy in htpasswd “Fix”

• Published “fix” for Apache htpasswd overflow:
strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”)
strncat(record,cpw,MAX_STRING_LEN-1);

CSE 484 - Fall 2022 36

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

What About This?

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to
previous stack frame
– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 - Fall 2022 37

In-Class Activity

Canvas -> Quizzes -> Oct 5

CSE 484 - Fall 2022 38

Off-by-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}

void main(int argc, char *argv[]) {
if (argc==2)

mycopy(argv[1]);
}

• 1-byte overflow: can’t change RET, but can change pointer to pre
frame

– On little-endian architecture, make it point into buffer
– RET for previous function will be read from buffer!

CSE 484 - Fall 2022 39

This will copy 513
characters into
buffer. Oops!

• 1-byte overflow: can’t change RET, but can change pointer to
previous stack frame…

Frame Pointer Overflow

CSE 484 - Fall 2022 40

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP ATTACK CODE

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if pointer to F is
stored in memory location P, then one can call F as (*P)(…)

CSE 484 - Fall 2022 41

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Legitimate function F

overflow

(elsewhere in memory)

Other Overflow Targets

• Format strings in C
– We’ll walk through this later

• Heap management structures used by malloc()
– More details in section
– Techniques have changed wildly over time

• These are all attacks you can look forward to in Lab #1 J

CSE 484 - Fall 2022 42

