CSE 484 / CSE M 584:
Finish Symmetric Encryption +
Start MACs

Fall 2022

Franziska (Franzi) Roesner
franzi@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Announcements

• Homework 2 (crypto) to be released today
 – Due Friday, Nov 4
 – Gradescope submission
 – You can get started now, but some problems will require content we will cover next week
When is an Encryption Scheme “Secure”?

• Hard to recover the key?
 – What if attacker can learn plaintext without learning the key?

• Hard to recover plaintext from ciphertext?
 – What if attacker learns some bits or some function of bits?
How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algorithm
 – What else does the attacker know? Depends on the application in which the cipher is used!

• Ciphertext-only attack

• KPA: Known-plaintext attack (stronger)
 – Knows some plaintext-ciphertext pairs

• CPA: Chosen-plaintext attack (even stronger)
 – Can obtain ciphertext for any plaintext of his choice

• CCA: Chosen-ciphertext attack (very strong)
 – Can decrypt any ciphertext except the target
Chosen Plaintext Attack

Attacker #1 changes their PIN to a number of their choice

PIN is encrypted and transmitted to bank

Attacker #2 eavesdrops on the wire and learns ciphertext corresponding to chosen plaintext PIN

... repeat for any PIN value
Very Informal Intuition

• Security against chosen-plaintext attack (CPA)
 – Ciphertext leaks no information about the plaintext
 – Even if the attacker correctly guesses the plaintext, they cannot verify their guess
 – Every ciphertext is unique, encrypting same message twice produces completely different ciphertexts
 • Implication: encryption must be randomized or stateful

• Security against chosen-ciphertext attack (CCA)
 – Integrity protection – it is not possible to change the plaintext by modifying the ciphertext

Minimum security requirement for a modern encryption scheme
So Far: Achieving Privacy

Encryption schemes: A tool for protecting privacy.

Message = M
Ciphertext = C

Alice
K

Encrypt

Decrypt

Bob
K

Adversary
K
K

CSE 484 - Fall 2022
Message authentication schemes: A tool for protecting integrity.

Integrity and authentication: only someone who knows KEY can compute correct MAC for a given message.
Reminder: CBC Mode Encryption

- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity
CBC-MAC

- Not secure when system may MAC messages of different lengths (*more in section!*).
- Use a different key – not encryption key
- NIST recommends a derivative called CMAC [FYI only]
Another Tool: Hash Functions
You Just Did This

```
[franzi@cse484:~/sploits$ md5sum sploit0.c
567878670559400a4d24f434142d589d  sploit0.c
franzi@cse484:~/sploits$
```
• Hash function H is a lossy compression function
 – Collision: $h(x) = h(x')$ for distinct inputs x, x'
• $H(x)$ should look “random”
 – Every bit (almost) equally likely to be 0 or 1
• Cryptographic hash function needs a few properties...
Property 1: One-Way

- **Intuition:** hash should be hard to invert
 - “Preimage resistance”
 - Let $h(x') = y \in \{0,1\}^n$ for a random x'
 - Given y, it should be hard to find any x such that $h(x)=y$

- **How hard?**
 - Brute-force: try every possible x, see if $h(x)=y$
 - SHA-1 (common hash function) has 160-bit output
 - Expect to try 2^{159} inputs before finding one that hashes to y.
Property 2: Collision Resistance

• Should be hard to find \(x \neq x' \) such that \(h(x) = h(x') \)
Birthday Paradox

• Are there two people in the first 1/8 of this class that have the same birthday?
 – 365 days in a year (366 some years)
 • Pick one person. To find another person with same birthday would take on the order of $\frac{365}{2} = 182.5$ people
 • Expect birthday “collision” with a room of only 23 people.
 • For simplicity, approximate when we expect a collision as $\sqrt{365}$.

• Why is this important for cryptography?
 – 2^{128} different 128-bit values
 • Pick one value at random. To exhaustively search for this value requires trying on average 2^{127} values.
 • Expect “collision” after selecting approximately 2^{64} random values.
 • 64 bits of security against collision attacks, not 128 bits.
Property 2: Collision Resistance

- Should be hard to find $x \neq x'$ such that $h(x) = h(x')$
- Birthday paradox means that brute-force collision search is only $O(2^{n/2})$, not $O(2^n)$
 - For SHA-1, this means $O(2^{80})$ vs. $O(2^{160})$
One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but not the other. (Next slide has details, FYI.)
One-Way vs. Collision Resistance
(Details here mainly FYI)

• One-wayness does not imply collision resistance
 – Suppose g is one-way
 – Define $h(x)$ as $g(x')$ where x' is x except the last bit
 • h is one-way (to invert h, must invert g)
 • Collisions for h are easy to find: for any x, $h(x0) = h(x1)$

• Collision resistance does not imply one-wayness
 – Suppose g is collision-resistant
 – Define $y = h(x)$ to be $0x$ if x is n-bit long, $1g(x)$ otherwise
 • Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts with 1, then must find collisions in g
 • h is not one way: half of all y's (those whose first bit is 0) are easy to invert (how?); random y is invertible with probability $\frac{1}{2}$
Property 3: Weak Collision Resistance

- Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
 - Attacker must find collision for a specific x. By contrast, to break collision resistance it is enough to find any collision.
 - Brute-force attack requires $O(2^n)$ time
- Weak collision resistance does not imply collision resistance.
Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
 – A ciphertext can be decrypted with a decryption key... hashes have no equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with Hash(x’)
 – Hash the same input twice → same hash value
 – Encrypt the same input twice → different ciphertexts

• Cryptographic hashes are also known as “cryptographic checksums” or “message digests”
Application: Password Hashing

• Instead of user password, store \text{hash(password)}
• When user enters a password, compute its hash and compare with the entry in the password file
• Why is hashing better than encryption here?

• System does not store actual passwords
• Don’t need to worry about where to store the key
• Cannot go from hash to password
Application: Password Hashing

• Which property do we need?
 – One-wayness?
 – (At least weak) Collision resistance?
 – Both?

• This is not the whole story on password storage; we’ll return to this later in the course.
Goal: Software manufacturer wants to ensure file is received by users without modification.

Idea: given goodFile and hash(goodFile), very hard to find badFile such that hash(goodFile)=hash(badFile)
Application: Software Integrity

• Which property do we need?
 – One-wayness?
 – (At least weak) Collision resistance?
 – Both?
Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
 – **One-wayness**: hard to recover the/a valid password

• Integrity of software distribution
 – **Weak collision resistance**
 – But software images are not really random... may need **full collision resistance** if considering malicious developers
Common Hash Functions

- **SHA-2**: SHA-256, SHA-512, SHA-224, SHA-384
- **SHA-3**: standard released by NIST in August 2015
- **MD5** – Don’t use for security!
 - 128-bit output
 - Designed by Ron Rivest, used very widely
 - Collision-resistance broken (summer of 2004)
- **SHA-1** (Secure Hash Algorithm) – Don’t use for security!
 - 160-bit output
 - US government (NIST) standard as of 1993-95
 - Theoretically broken 2005; practical attack 2017!
SHA-1 Broken in Practice (2017)

Google just cracked one of the building blocks of web encryption (but don’t worry)

It’s all over for SHA-1

https://shattered.io