Hello 😊

• Instructor: Franzi (Prof. Franziska Roesner) (she/her)
• Staff:
 – David Chen
 – Theo Gregersen
 – Aroosh Kumar
 – Wenqing Lan
 – Tim Mandzyuk
 – Noah Ponto
 – Basia Radka
 – William Travis
 – Julia Wang

CSE 484 / CSE M 584 - Fall 2022
Course Plan

• Lectures and Sections and (most) Office Hours in-person
 – Lectures are recorded (please attend!)*
 * Sections may be only partially recorded
 * Office hours will not be recorded
 * Recordings include student questions and should not be shared outside the class
 – Access the recordings via Canvas
• Largely the same curriculum as usual
 – Labs and homeworks and final project; no exams
 – We will adapt throughout the quarter as needed
• If you are struggling with anything, let us know!

CSE 484 / CSE M 584 - Fall 2022
Course Resource Cheat Sheet

- **In Person:** Lectures, sections, office hours (planned)
- **Zoom:** Limited office hours (planned)
- **Canvas:** Links to recordings, assignment submissions, grades
- **Course website:** Schedule, assignment details, readings, policies
- **Ed:** Discussion board
- **Course mailing list:** Announcements (though most go to Ed)
- **Email:** Reach course staff privately (generally best: cse484-tas@cs)
What Does “Security” Mean to You?

Try putting some answers in https://pollev.com/franziroesner
What are topics you are excited about?

• It is also okay if you don’t know what topics you are interested in yet!
• The course’s final project will give you the opportunity to explore something not covered in class in depth.

Try putting some answers in https://pollev.com/franziroesner
How Systems Fail

Systems may fail for many reasons, including:

• **Reliability** deals with accidental failures
• **Usability** deals with problems arising from operating mistakes made by users
• **Design and goal oversights** deals with oversights, errors, and omissions during the design process
• **Security** deals with intentional failures created by intelligent parties
 – Security is about computing in the presence of an adversary
 – But security, reliability, usability, and design/goals oversights are all related
Challenges: What is “Security”?

• What does security mean?
 – Often the hardest part of building a secure system is figuring out what security means (“threat modeling”)
 – Who are the stakeholders for which we are considering “security”?
 – What are the assets to protect?
 – What are the threats to those assets?
 – Who are the adversaries, and what are their resources?
 – What is the security policy or goals?

• Perfect security does not exist!
 – Security is not a binary property
 – Security is about risk management

Multiple assignments and activities are designed to exercise your thinking about these issues.
Privacy?

- Privacy often strongly overlaps security

- Privacy may also consider when systems work as intended!

- Not a hard-and-fast distinction
 - Privacy and security are generally intertwined
 - They might sometimes (but not always) be at odds
Two Key Themes of this Course

1. How to **think** about security and privacy
 - The “Security Mindset” – a “new” way to think about systems
 - (This mindset will be valuable even outside of the security context, e.g., to consider diverse stakeholders of a system)

2. **Technical aspects of security and privacy**
 - Vulnerabilities and attack techniques
 - Defensive technologies
 - Topics including: software security, cryptography, malware, web security, web privacy, smartphone security, authentication, usable security, anonymity, physical security, security for emerging technologies
Theme 1: Security Mindset

• Thinking critically about designs, **challenging assumptions**
• Being **curious**, thinking **like an attacker**, exploring **use cases not considered by the designers**,
• “That new product X sounds awesome, I can’t wait to use it!” versus “That new product X sounds cool, but I wonder what would happen if someone did Y with it; I wonder if the designers thought of Z...”

• Why it’s important
 – **Technology changes**, so learning to **think like a security person** is more important than learning specifics of today’s systems
 – Will help you **design better systems/solutions**
 – Interactions with **broader context**: law, policy, ethics, etc.
Security Mindset Example
Security Mindset Example
Learning the Security Mindset

• Several approaches for developing “The Security Mindset” and for exploring the broader contextual issues surrounding computer security
 – Homework #1
 • Security reviews and ethics reflections
 • May work in groups of up to 3 people (groups are encouraged – lots of value in discussing security with others!)
 – In class/section discussions and activities
 – Participation in Ed discussion board (e.g., thoughts and questions about news stories, technologies)
A Word on Groupwork

• Strongly encouraged, in some cases required
 – Beneficial to practice working in groups
 • Especially if you don’t like it 😊
 – Attack-based labs require some creativity, where group interactions can help generate ideas

• (Please follow all the usual in-person contact guidelines 😊)
What This Course is Not About

• **Not** a comprehensive course on computer security
 – Computer security is a broad discipline!
 – Impossible to cover everything in one quarter
 – So be careful in industry or wherever you go!

• **Not** about all of the latest and greatest attacks
 – Read news, ask questions, discuss on Ed

• **Not** a course on ethical, legal, or economic issues
 – We will touch on these issues, but the topic is huge

• **Not** a course on how to “break into” systems
 – Yes, we will learn about attacks ... but the ultimate goal is to develop an understanding of attacks so that you can build more secure systems
Security: Not Just for PCs

- smartphones
- voting machines
- EEG headsets
- medical devices
- wearables
- RFID
- mobile sensing platforms
- cars
- game platforms
- airplanes
Communication

• **franzi@cs**
 – Use this (or instructor office hours) if something is sensitive, personal, confidential, etc.

• **cse484-tas@cs.washington.edu**
 – Best method to reach all course staff (including instructor)

• **Ed Discussion Board**
 – Use this if other students in the class would benefit from your question/answers [common case]

• **Course mailing list: multi_cse484a_au22@uw.edu**
 – We’ll use this (and Ed) for announcements

• We will do our best to be responsive, but **please be professional**, and plan ahead!
Course Materials

• Readings:
 – No textbook; I’ll be posting reading materials as we go
 – Some optional, some strongly recommended

• Attend lectures
 – Lectures will not follow any textbooks
 – Lectures will focus on “big-picture” principles and ideas

• Attend sections (if you have questions about assignments, best to attend rather than watch later)
 – Details not covered in lecture, especially about homeworks and labs
 – More opportunity for discussion
Guest Lectures

• We will have a few guest lectures throughout the quarter
 – Useful to give you a different perspective: e.g., research, industry, government, legal
Course Logistics (CSE 484)

Security is a contact sport!

• Labs (45% of the grade)
• Homework (25% of grade)
• Participation and in-class activities (10% of the grade)
• Final project (20% of the grade)
Course Logistics (CSE M 584)

Same as before, but...

• Labs (42% of the grade) [-3%]
• Homework (22% of grade) [-3%]
• Research readings (10%) [+10%]
• Participation and in-class activities (10%)
• Final project (16% of the grade) [-4%]
Labs

• General plan:
 – 3 labs
 • First lab out next week (TBD)
 – Topics:
 • Software security (Buffer overflows, …)
 • Web security (XSS attacks, SQL injections, …)
 • Smart homes
 – Submit to Canvas
 – Groups must be configured on Canvas
Homework

• 3 homeworks distributed across quarter
 – http://courses.cs.washington.edu/courses/cse484/22au/assignments
 – First homework out later today

• Do now (no later than October 3): sign ethics form!
Ethics

• To learn to defend systems, you will learn to attack them. You must use this knowledge ethically.

• In order to get a non-zero grade in this course, you must electronically sign the “Security and Privacy Code of Ethics” form by 11:59pm on Monday, October 3.

 (Linked from the course schedule)

We will also repeatedly consider ethics (more generally) as part of our curriculum throughout course (see HW1, for example).
In-Class Participation

• Trying to bring the best of online to in-person
 – In-class discussions, polls, and other online tools
 – More use of the online discussion board
 – Questions live and via pollev

• **Main component: Lightly graded in-class activities**
 – Canvas “quiz” submission (intended for use during class, but can be submitted up until start of next lecture)
 – Not a “quiz” in the traditional sense
Late Submission Policy

• 5 free late days, no questions asked
 – Cumulative, throughout the quarter
 – Use up to 3 for one submission
 – All group members use days at once

• After that, late assignments will be dropped 20% per calendar day.
 – Late days will be rounded up
 – So an assignment turned in 26 hours late will be downgraded 40%
 – See website for exceptions -- a small number of assignments must be turned in on time

• Please write on the assignment how many late days you are using!
To Do

• Sign ethics form (due October 3)
 – https://forms.gle/WMe1gQt26t5RAsY48

• Homework #1 (due October 7)
 – Start forming groups (e.g., use discussion board) and thinking about technologies you’d like to review.

Questions?

cse484-tas@cs.washington.edu