
CSE 484 / M 584: Lab #2, Autumn 2022

Web Attack Lab
Due: Tuesday, November 29, 2022, 11:59pm

Before you start
● You may work alone, or in groups of up to 3 people (e.g., reusing your groups from Lab

1, or new groups).
● Please use the sign up form here: https://forms.gle/hy94wg3Kkrc11RQ18
● We will grant access approximately once every 24 hours after the launch of the lab.
● Notice that there is an FAQ at the end of this document! You may want to revisit it

periodically as you get stuck.

Server Address:
https://cse484.cs.washington.edu/lab2

What To Turn In
In addition to successfully completing the exploits on our server, please submit a
document (txt, word, or pdf) to Canvas that, for each exploit:

● Provides the payload you found (i.e., what you entered into the text box on our server)
● Provides a ~1 sentence intuition for how it works
● Any accompanying files you created (e.g., your PHP script)

Please note that there is an opportunity for partial credit here: if you can’t get an exploit to work,
please still submit what you tried and why you thought it might work.

Please join a Lab 2 group via Canvas before submitting.

Goal
The goal of this lab is to gain hands-on experience with penetration testing of web applications.

For this part of the lab, you are presented with three different scenarios. Each scenario asks you to
perform a task you would not otherwise be able to complete as a regular, benign user. You'll have to
figure out what vulnerability exists in each challenge, apply what you've learned in class, and craft a
special payload to achieve your goal.

Scenarios 1-3 are listed below. They add up to a total of 27 points and 12 extra credit points.

https://forms.gle/hy94wg3Kkrc11RQ18
https://cse484.cs.washington.edu/lab2

(Optional) Back Story

Scenario #1: Pikachu, Meowth, and Cookies
Everyone likes cookies, and Pikachu and Meowth are no exception. As Team Rocket's
4294967296th evil plan, Meowth is going to purchase all the cookies within Pikachu's reach so
Pikachu would eventually surrender and give himself in, but of course Team Rocket cannot win.

Having eavesdropped on their conversation, you learned that Team Rocket keeps the cookies they
bought in 8 different safes and store the combinations to each of the safes in 8 different cookies
Meowth carries with him. You also learned that Meowth set up a website to facilitate communications
with his fans (if any). With these in mind, you want to find a way get Pikachu some cookies back
before he faints from a lack of cookies... but how?

Scenario #2: Jailbreak
You have been put in jail due to a wrongful conviction. You have no one to depend on, and the only
way you can eat that University Teriyaki again is to jailbreak. Physical locks are for the weak; as a
former Jedi, you can easily break them with the Force. What bothers you are the digital locks that
are connected to a central database. But then, some materials you've learned from CSE 484 flashes
before you…

Scenario #3: Hack your 4.0
Having joined CSE 484, you realized a sad truth: there's no way you can get a 4.0 for the class.
You've learned that the seemingly nice and friendly CSE 484 TA has no mercy and routinely fails
students as a hobby, and that the only way to get a good grade is to surreptitiously hack into the
gradebook and change your own grade.

However, your CSE 484 TA is like no other; there's no way their website can be vulnerable to any
attacks, or so they say…

Points
The following is a breakdown of the points for each problem.

Scenario #1
Problem #

1. 2 points
2. 2 points
3. 3 points
4. 3 points
5. 2 points
6. 3 points
7. 4 points (optional, extra credit)
8. 3 points (optional, extra credit)

Scenario #2
Problem #

1. 2 points
2. 5 points
3. 5 points (optional, extra credit)

Scenario #3
Problem #

1. 5 points

Getting down to business
Now that you have read the motivational backstory, let’s get started!

Helpful tools and setup

Browser
During the course of this lab, we recommend that you use Firefox. The server uses Firefox
(IceWeasel) and your exploit might exhibit different behavior with another browser like Chrome
(i.e., your code might work on Chrome but not on Firefox).

Also, disable extensions that may change how your browser handles cookies like ad blockers. If
you use Firefox as your daily browser, and don’t want to disable your extensions, you can install
Firefox Developer Edition to have a separate, “clean” installation.

Note that protection tools that are built into the browser may interfere with this assignment. You
might try turning off tools like Chrome's XSSAuditor.

Setting up your webpage
When doing XSS attacks, you will need to exfiltrate the cookie from the victim’s browser to a
location where you can retrieve the cookie. One easy way to do this is to set up a webpage that
takes GET requests with parameters. The goal is to have a page such that when you navigate
to
https://homes.cs.washington.edu/~<username>/cookieEater.php?cookie=se
cretCookieValue, your page will record secretCookieValue so you can read it later. We
will go through the steps to help you get set up.

Host your webpage at homes.cs.washington.edu, follow this link to read the FAQs.
1. Once you have figured out where to host your page, you will need to write some PHP (or

any other server side programming language) that will retrieve GET variables. (Hint: This
should not take more than 10 lines of code). Here are some hints on what you will need.

a. PHP get variables
b. PHP tutorial
c. Using PHP to write to a file (useful for saving cookies)

2. Now, you can try out your cookie receiver by using your browser to navigate to
homes.cs.washington.edu/~<username>/cookieEater.php?cookie=secr
etCookieValue, assuming your php file is named cookieEater.php. If your php
script records the value secretCookieValue correctly, you can get started!

If your script does not work, you might want to check whether your PHP script can be run by the
Apache server -- in particular, you might need to set the file permissions to world-readable. We
recommend chmod 644 for your php script (world-readable but not world-writable) and

https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/developer/
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
http://homes.cs.washington.edu/FAQ.html
http://php.net/manual/en/reserved.variables.get.php
http://www.w3schools.com/php/
http://www.w3schools.com/php/func_filesystem_file_put_contents.asp

chmod 622 for the file to which you’re writing cookies (world-writable but not
world-readable, so others cannot read your stolen cookies, but Apache can write to it).

Scenario #1: Pikachu, Meowth, and Cookies (XSS)
In this scenario, you will mount a cross-site scripting attack against all versions of the link
sharing website, stealing the bot’s (Meowth) login cookies, and using it to unlock the next level.

Helpful links for XSS:

● Javascript: http://www.w3schools.com/js/js_intro.asp
● XSS intro: https://owasp.org/www-community/attacks/xss/
● Tutorial on XSS: http://excess-xss.com/
● XSS Filter Evasion Cheat Sheet: link

As you progress through the problems, the filtering will get more challenging and you will have
to think of more creative ways to evade the filters.

List of filters:

1. No filter
2. Filters 'script'
3. Filters 'script', 'style', 'on', and ' ' (space)
4. Filters 'document', '(', ')', '<', '>'
5. Filters '<', '>'
6. Filters s/[()<>+]//g (that's a regular expression that removes all the characters in the square
brackets from the input string)
7. Filters s/[bcdfihzjrst<>]//ig (similar to above, but ignores case for letters as well)
8. Filters s/[0-9a-z]//gi (removes all numbers and all letters from input string)

XSS attack process:
● Login to the server, select a problem.
● Start by typing JavaScript into the “Send me an image link!” box
● See if you can get your browser to execute JavaScript (see if you can evade filters)
● Craft JavaScript to steal your own cookie and send it to a server (the one we set up

previously)
● Enter your attack JavaScript into “Send me an image link!” box
● You will be redirected (the page will complain about the URL being invalid)
● Copy the URL at the address bar
● Go back one page
● Paste the URL into “Send me an image link!”
● Wait ~30 seconds for the bot to ‘visit’ your link

http://www.w3schools.com/js/js_intro.asp
https://owasp.org/www-community/attacks/xss/
http://excess-xss.com/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://cse484.cs.washington.edu/lab2

● If successful, your server will record the value of the bot’s cookies
(authenticated=<something>)

● Copy the value, and use the Storage Inspector in Firefox’s developer tools to create the
same cookie (with name=authenticated and value=<something>) for yourself

● Click “Open Safe #” on the top right corner, if you got the right cookie, the page will say
“Congratulations! …”

● The button for the corresponding problem should turn green when you solve it
● Repeat for the rest…

Scenario #2: Jailbreak (SQL Injection)
For this scenario, you will need to perform a SQL Injection attack.

Note: Some attempted SQL injection attacks may be blocked by CSE’s web application firewall
(WAF). If it takes a long time to load the page, you probably hit the WAF. You can try adding
spaces or similar characters where possible, and when in serious doubt, check with the course
staff if you’re on the right track. The correct solution can bypass the WAF.

Some helpful links:

● SQL (and SQL injection): http://www.w3schools.com/sql/default.asp
● Some more SQL injection: https://www.owasp.org/index.php/SQL_Injection

Scenario #3: Hack your 4.0 (CSRF)
For this scenario, you will need to perform a Cross-Site Request Forgery attack.

Some helpful links:
● https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
● What is CSRF: http://talks.php.net/show/xss-csrf-apachecon2003/13

https://developer.mozilla.org/en-US/docs/Tools/Storage_Inspector#Cookies
http://www.w3schools.com/sql/default.asp
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://talks.php.net/show/xss-csrf-apachecon2003/13

FAQs and Hints
● Issue: My php script isn’t working!

○ Your script must run on homes.cs.washington.edu (this is a feature, not a bug)!
You’ll need to use one of your group members’ CSE accounts to host on
homes.cs.washington.edu. More details for how to access and edit your files
there can be found here: https://homes.cs.washington.edu/FAQ.html.

○ Double check that you have the file permissions correct (see above).
● Issue: Is the clicking bot working?

○ Probably :) Check using a previously working script for a different problem, email
the course staff otherwise.

● Issue: My XSS exploit is not working!
○ First things first: Have you made sure that you can steal your own cookie

successfully, by visiting the attack URL yourself in your own browser? If that does
not work, then it won’t work when the clicking bot clicks on it either.

○ Make sure your code is not creating a popup / new window. We have popups
blocked in our browser! Who still has popups enabled these days? ;)

○ Make sure your attack is on homes.cs.washington.edu.

○ Double-check what the filter for the problem is and whether you've missed
something.

○ Are you trying to use fetch() to make a request? This will not always work
(though we are not sure why). Try another way of loading a URL or redirecting
the page instead.

○ The XSS cheat sheet has examples like . It
notes, but you might miss, that this actually does not work on modern browsers.
But there are other tags where you can apply similar principles, i.e., tags that
take a src attribute. There’s even one in the cheat sheet...

○ Are you trying to cleverly encode an HTML tag or attribute? This won’t work. You
can only encode things inside strings to evade a filter, not HTML tags/attributes
themselves. So for example, if “on” is filtered, you won’t be able to find a way to
use an “onload” attribute no matter what you try. You’ll have to find another way.

○ Make sure you are using the right quotation symbol: use " not “. If you are
preparing your exploits in something like Microsoft Word document or other text
editor that automatically changes " to “ then you might accidentally have this
issue.

● Issue: My SQL exploit is not working!
○ (For SQL2:) Getting a SQL error that looks something like "Mysql Error: You can't

specify target table 'sql2' for update in FROM clause"? You're probably on the
right track! To deal with this, you'll want to select in a subquery. This might help:
http://web.archive.org/web/20161028092618/http://www.xaprb.com/blog/2006/06/
23/how-to-select-from-an-update-target-in-mysql/. (Note: This hint is not
designed to help you figure out the solution if you're lost, so ignore it for now if it
doesn't make any sense.)

● Issue: My XSRF exploit is not working!

https://homes.cs.washington.edu/FAQ.html
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
http://web.archive.org/web/20161028092618/http://www.xaprb.com/blog/2006/06/23/how-to-select-from-an-update-target-in-mysql/
http://web.archive.org/web/20161028092618/http://www.xaprb.com/blog/2006/06/23/how-to-select-from-an-update-target-in-mysql/

○ Make sure you are using https (not http) URLs for cse484 and homes in your
exploit.

● Other tips:
○ Always "view-source" of the resulting error page to check for bugs in how your

intended HTML might have been interpreted.
○ Another reason to view-source: Not all error pages are the same, so your

strategy might not always be the same.
○ Some approaches to solve the XSS problems cause the page to immediately

redirect upon submission away from the page that complains about the URL
being invalid. This is problematic / annoying because you need to copy the URL
from that page to try resubmitting it! Here are a couple ways you can get around
this:

■ Modify the tag that you’re passing in so that it does not render when you
submit the link. For example, changing <body …> to <bdy …>. Then you
can fix it back to body when you resubmit the link.

■ In Firefox, you can click History on the top bar to view the URLs you have
visited recently. Your result page URL should be here and you can right
click and copy it!

